Orbit method

In mathematics, the orbit method (also known as the Kirillov theory, the method of coadjoint orbits and by a few similar names) establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: orbits of the action of the group on the dual space of its Lie algebra. The theory was introduced by Kirillov (1961, 1962) for nilpotent groups and later extended by Bertram Kostant, Louis Auslander, Lajos Pukánszky and others to the case of solvable groups. Roger Howe found a version of the orbit method that applies to p-adic Lie groups.[1] David Vogan proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.[2]

Relation with symplectic geometry

One of the key observations of Kirillov was that coadjoint orbits of a Lie group G have natural structure of symplectic manifolds whose symplectic structure is invariant under G. If an orbit is the phase space of a G-invariant classical mechanical system then the corresponding quantum mechanical system ought to be described via an irreducible unitary representation of G. Geometric invariants of the orbit translate into algebraic invariants of the corresponding representation. In this way the orbit method may be viewed as a precise mathematical manifestation of a vague physical principle of quantization. In the case of a nilpotent group G the correspondence involves all orbits, but for a general G additional restrictions on the orbit are necessary (polarizability, integrality, Pukánszky condition). This point of view has been significantly advanced by Kostant in his theory of geometric quantization of coadjoint orbits.

Kirillov character formula

For a Lie group , the Kirillov orbit method gives a heuristic method in representation theory. It connects the Fourier transforms of coadjoint orbits, which lie in the dual space of the Lie algebra of G, to the infinitesimal characters of the irreducible representations. The method got its name after the Russian mathematician Alexandre Kirillov.

At its simplest, it states that a character of a Lie group may be given by the Fourier transform of the Dirac delta function supported on the coadjoint orbits, weighted by the square-root of the Jacobian of the exponential map, denoted by . It does not apply to all Lie groups, but works for a number of classes of connected Lie groups, including nilpotent, some semisimple groups, and compact groups.

Special cases

Nilpotent group case

Let G be a connected, simply connected nilpotent Lie group. Kirillov proved that the equivalence classes of irreducible unitary representations of G are parametrized by the coadjoint orbits of G, that is the orbits of the action G on the dual space of its Lie algebra. The Kirillov character formula expresses the Harish-Chandra character of the representation as a certain integral over the corresponding orbit.

Compact Lie group case

Complex irreducible representations of compact Lie groups have been completely classified. They are always finite-dimensional, unitarizable (i.e. admit an invariant positive definite Hermitian form) and are parametrized by their highest weights, which are precisely the dominant integral weights for the group. If G is a compact semisimple Lie group with a Cartan subalgebra h then its coadjoint orbits are closed and each of them intersects the positive Weyl chamber h*+ in a single point. An orbit is integral if this point belongs to the weight lattice of G. The highest weight theory can be restated in the form of a bijection between the set of integral coadjoint orbits and the set of equivalence classes of irreducible unitary representations of G: the highest weight representation L(λ) with highest weight λh*+ corresponds to the integral coadjoint orbit G·λ. The Kirillov character formula amounts to the character formula earlier proved by Harish-Chandra.

See also

References

  1. ^ Howe, Roger (1977), "Kirillov theory for compact p-adic groups", Pacific Journal of Mathematics, 73 (2): 365–381, doi:10.2140/pjm.1977.73.365
  2. ^ Vogan, David (1986), "Representations of reductive Lie groups", Proceedings of the International Congress of Mathematicians (Berkeley, California): 245–266

Read other articles:

Неприйняття втрат (англ. loss aversion) у психології та економіці позначає тенденцію зважувати збитки вище, ніж прибуток. Неприйняття втрат є частиною теорії перспектив (нім. Neue Erwartungstheorie), яку Канеман та Тверський запровадили в 1979 році. [1] Важливою знахідкою цієї теорії є те,

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) غافين بون   معلومات شخصية الميلاد 19 يناير 1964 (59 سنة)  بورتسموث  مواطنة المملكة المتحدة  الحياة العملية المهنة كاتب  اللغات الإنجليزية  بوابة الأ

 

Politik dan pemerintahan of Hong Kong Hukum Dasar Hak asasi manusia Eksekutif Kepala Eksekutif Carrie Lam Kepala Sekretaris Matthew Cheung Sekretaris Keuangan Paul Chan Sekretaris untuk Kehakiman Teresa Cheng Dewan Eksekutif Konvenor: Bernard Chan Biro, departemen, dan lain-lain Dinas Sipil Hong Kong Legislatif Dewan Legislatif Presiden: Andrew Leung Yudikatif Pengadilan Banding Terakhir Hakim Ketua: Geoffrey Ma Pengadilan Tinggi Distrik Dewan Distrik Pemilihan umum Partai politik Hak pilih u...

Pour les articles homonymes, voir ADI. Action démocratique indépendante Logotype officiel. Présentation Président Patrice Trovoada Fondation 1994 Scission dans MDFM-PL (2001)UDD (2005) Siège Rua 3 de FevereiroÁgua Grande Vice-présidents Orlando da MataSelmira Fernandes Positionnement Centre droit[1] Couleurs Jaune Site web adidigital.com Présidents de groupe Assemblée nationale Abnildo Oliveira (ADI) Représentation Députés 30  /  55 Conseillers municipaux 42  / ...

 

El espacio euclídeo tridimensional R3 es un espacio vectorial y las líneas y los planos que pasan por el origen son subespacios vectoriales de R3. El álgebra lineal es una rama de las matemáticas que estudia conceptos tales como vectores, matrices, espacio dual, sistemas de ecuaciones lineales y en su enfoque de manera más formal, espacios vectoriales y sus transformaciones lineales. Dicho de otra forma, el Álgebra lineal es la rama de las matemáticas que se ocupa de las ecuaciones lin...

 

Free image viewer software for the GNOME desktop environment Image ViewerEye of GNOME 40 (released in 2021-03)Developer(s)The GNOME ProjectStable release44.3[1]  / 1 July 2023; 5 months ago (1 July 2023) Repositorygitlab.gnome.org/GNOME/eog.git Written inC (GTK)Operating systemUnix-likePlatformGNOMESuccessorGNOME LoupeTypeImage viewerLicenseGPL-2.0-or-laterWebsitewiki.gnome.org/Apps/EyeOfGnome Eye of GNOME is the former default image viewer for the GNOME desktop envi...

Etcheverry Hall Etcheverry Hall houses the Departments of Mechanical, Industrial, and Nuclear Engineering of the College of Engineering at the University of California, Berkeley. Etcheverry Hall is named after Bernard A. Etcheverry, professor of irrigation and drainage from 1915 to 1951, who later served as chair of the Department of Irrigation and Drainage from 1923–51.[1] Built in 1964,[2][3] it is located on the north side of Hearst Avenue, across the street from ...

 

Polish politician Andrzej GrzybMember of SejmIncumbentAssumed office 25 September 2005 Personal detailsBorn (1956-08-23) 23 August 1956 (age 67)SiedlikówNationalityPolishPolitical partyPolish People's Party Andrzej Marian Grzyb (born 23 August 1956) is a Polish politician who served as a Member of the European Parliament from 2003 until 2004 and from 2009 until 2019. He was elected to Sejm on 25 September 2005, getting 7,986 votes in 36 Kalisz district as a candidate from the Polish...

 

Icono de una tarjeta de crédito El uso de tarjetas favorece la eliminación de dinero en efectivo. La generalización de sistemas de pago electrónico hace disminuir la cantidad de dinero en metálico en la sociedad y aumenta la cantidad de dinero en manos de los bancos.[1]​ Una sociedad sin dinero en efectivo o sociedad sin dinero en metálico (en inglés, cashless society) es aquella en la que se llevado a cabo la eliminación, abolición o prohibición del dinero en efectivo -moneda...

First edition, 1838 Theatrical poster for Zemsta, 1865 Zemsta (Revenge) is a Polish comedy by Aleksander Fredro, a Polish poet, playwright and author active during Polish Romanticism in the period of partitions. Zemsta belongs to the canon of Polish literature.[1] It is a play in four acts, written in the octosyllabic verse mostly in the vernacular of Lesser Poland (Małopolska); filled with proverbs and paraphrased allusions.[2] Background Ruins of Kamieniec Castle in Odrzyko...

 

Fasiakhali Wildlife SanctuaryIUCN category IV (habitat/species management area)Fasiakhali Wildlife SanctuaryLocation in BangladeshLocationCox's bazar District, Chittagong Division, BangladeshNearest cityFasiakhaliCoordinates21°40′00″N 92°08′00″E / 21.66667°N 92.13333°E / 21.66667; 92.13333Area1,302 ha (3,220 acres)Established2007 (2007) Fasiakhali Wildlife Sanctuary (Bengali: ফাসিয়াখালী বন্যপ্রানী ...

 

1935 American mystery film This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Murder by Television – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) Murder by TelevisionFilm posterDirected byClifford SanforthWritten byJoseph O'DonnellProduced byHarry Joe BrownStarringB...

American film producer Harmon M. KaslowKaslow in 2012BornHollywood, CAAlma materUniversity of California, Davis, University of Southern CaliforniaOccupation(s)General Counsel; Business and Legal Affairs; Motion Picture Producer Harmon Kaslow is a licensed attorney (California[1] and Federal Courts) and motion picture producer. Along with John Aglialoro, Kaslow produced a trilogy of movies based on the Ayn Rand novel titled Atlas Shrugged including Atlas Shrugged: Part I and Atlas...

 

Ali Seibou Presidente de la República del Níger 20 de diciembre de 1989-27 de febrero de 1993Predecesor Él mismoSucesor Mahamane Ousmane Jefe de Estado de la República de Níger(Presidente del Consejo de Orientación Nacional Supremo) 17 de mayo de 1989-20 de diciembre de 1989Predecesor Él mismoSucesor Él mismo (Presidente del Consejo Militar Supremo) 10 de noviembre de 1987-17 de mayo de 1989Predecesor Seyni Kountché(Presidente del Consejo Militar Supremo)Sucesor Él mismo Informació...

 

1997 studio album by Wyclef JeanWyclef Jean Presents The CarnivalStudio album by Wyclef JeanReleased24 June 1997Recorded1996-1997GenreHip hop[1]Length73:51LabelColumbia[2]ProducerWyclef Jean, Jerry WondaWyclef Jean chronology Wyclef Jean Presents The Carnival(1997) The Ecleftic: 2 Sides II a Book(2000) Singles from The Carnival We Trying to Stay AliveReleased: 27 May 1997 Anything Can HappenReleased: 22 September 1997 GuantanameraReleased: 8 October 1997 Gone till Nove...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: The Nosh Bar – news · newspapers · books · scholar · JSTOR (November 2021) The Nosh Bar was a salt beef bar at 42 Great Windmill Street, London, for over forty years, opening in 1944 and finally closing in the late 1980s. It re-opened in 2009 at 39 Gr...

 

Skyscraper in the City of London National Westminster Tower redirects here. For National Westminster House in Birmingham, see 103 Colmore Row. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tower 42 – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template mess...

 

American CommissionerFor other people with the same name, see Ray Kelly (disambiguation). Raymond Kelly37th and 41st Police Commissioner of New York CityIn officeJanuary 1, 2002 – December 31, 2013MayorMichael BloombergPreceded byBernie KerikSucceeded byBill BrattonIn officeSeptember 1, 1992 – January 1, 1994Acting: September 1, 1992 – October 16, 1992MayorDavid DinkinsPreceded byLee BrownSucceeded byBill Bratton16th Commissioner of the United States Customs ServiceIn ...

Azerbaijani philanthropist and women's rights activist (1873–1955) Hamida JavanshirHamida Javanshir in the 1890sBorn(1873-01-19)January 19, 1873Kahrizli, near Agjabadi, Russian Empire (present-day Azerbaijan)DiedFebruary 6, 1955(1955-02-06) (aged 82)Baku, Azerbaijan SSR, Soviet Union (present-day Azerbaijan)Other namesHamideh Khanum JavanshirEducationHomeschooledOccupation(s)Writer, activist, philanthropistSpouse(s)Ibrahim bey Davatdarov (†1901)Jalil Mammadguluzadeh (†1932)Chi...

 

Basketball team season 2023–24 Alabama A&M Bulldogs basketballConferenceSouthwestern Athletic ConferenceRecord1–6 (0–0 SWAC)Head coachOtis Hughley Jr. (2nd season)Associate head coachCal CochranAssistant coaches Rodney Broughton Jr. Brandon Houston Home arenaAlabama A&M Events CenterSeasons← 2022–232024–25 → 2023–24 SWAC men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT Prairie View A&M 0 &...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!