The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term temperature is used, since hot, thermal and cold neutrons are moderated in a medium with a certain temperature. The neutron energy distribution is then adapted to the Maxwell distribution known for thermal motion. Qualitatively, the higher the temperature, the higher the kinetic energy of the free neutrons. The momentum and wavelength of the neutron are related through the de Broglie relation. The long wavelength of slow neutrons allows for the large cross section.[1]
But different ranges with different names are observed in other sources.[4]
The following is a detailed classification:
Thermal
A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10−21J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, Epeak = k T.
After a number of collisions with nuclei (scattering) in a medium (neutron moderator) at this temperature, those neutrons which are not absorbed reach about this energy level.
Neutrons of lower (much lower) energy than thermal neutrons.
Less than 5 meV.
Cold (slow) neutrons are subclassified into cold (CN), very cold (VCN), and ultra-cold (UCN) neutrons, each having particular characteristics in terms of their optical interactions with matter. As the wavelength is made (chosen to be) longer, lower values of the momentum exchange become accessible. Therefore, it is possible to study larger scales and slower dynamics. Gravity also plays a very significant role in the case of UCN. Nevertheless, UCN reflect at all angles of incidence. This is because their momentum is comparable to the optical potential of materials. This effect is used to store them in bottles and study their fundamental properties[5][6] e.g. lifetime, neutron electrical-dipole moment etc... The main limitations of the use of slow neutrons is the low flux and the lack of efficient optical devices (in the case of CN and VCN). Efficient neutron optical components are being developed and optimized to remedy this lack.[7]
A fast neutron is a free neutron with a kinetic energy level close to 1 MeV (100 TJ/kg), hence a speed of 14,000 km/s or higher. They are named fastneutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators.
Fast neutrons are produced by nuclear processes:
Nuclear fission produces neutrons with a mean energy of 2 MeV (200 TJ/kg, i.e. 20,000 km/s), which qualifies as "fast". However the range of neutrons from fission follows a Maxwell–Boltzmann distribution from 0 to about 14 MeV in the center of momentum frame of the disintegration, and the mode of the energy is only 0.75 MeV, meaning that fewer than half of fission neutrons qualify as "fast" even by the 1 MeV criterion.[8]
Neutron emission occurs in situations in which a nucleus contains enough excess neutrons that the separation energy of one or more neutrons becomes negative (i.e. excess neutrons "drip" out of the nucleus). Unstable nuclei of this sort will often decay in less than one second.
Fast neutrons are usually undesirable in a steady-state nuclear reactor because most fissile fuel has a higher reaction rate with thermal neutrons. Fast neutrons can be rapidly changed into thermal neutrons via a process called moderation. This is done through numerous collisions with (in general) slower-moving and thus lower-temperature particles like atomic nuclei and other neutrons. These collisions will generally speed up the other particle and slow down the neutron and scatter it. Ideally, a room temperature neutron moderator is used for this process. In reactors, heavy water, light water, or graphite are typically used to moderate neutrons.
An increase in fuel temperature also raises uranium-238's thermal neutron absorption by Doppler broadening, providing negative feedback to help control the reactor. When the coolant is a liquid that also contributes to moderation and absorption (light water or heavy water), boiling of the coolant will reduce the moderator density, which can provide positive or negative feedback (a positive or negative void coefficient), depending on whether the reactor is under- or over-moderated.
Intermediate-energy neutrons have poorer fission/capture ratios than either fast or thermal neutrons for most fuels. An exception is the uranium-233 of the thorium cycle, which has a good fission/capture ratio at all neutron energies.
Fast-neutron reactors use unmoderated fast neutrons to sustain the reaction, and require the fuel to contain a higher concentration of fissile material relative to fertile material (uranium-238). However, fast neutrons have a better fission/capture ratio for many nuclides, and each fast fission releases a larger number of neutrons, so a fast breeder reactor can potentially "breed" more fissile fuel than it consumes.
Fast reactor control cannot depend solely on Doppler broadening or on negative void coefficient from a moderator. However, thermal expansion of the fuel itself can provide quick negative feedback. Perennially expected to be the wave of the future, fast reactor development has been nearly dormant with only a handful of reactors built in the decades since the Chernobyl accident due to low prices in the uranium market, although there is now a revival with several Asian countries planning to complete larger prototype fast reactors in the next few years.[when?]
^Carron, N.J. (2007). An Introduction to the Passage of Energetic Particles Through Matter. p. 308. Bibcode:2007ipep.book.....C.
^"Neutron Energy". www.nuclear-power.net. Retrieved 27 January 2019.
^
H. Tomita, C. Shoda, J. Kawarabayashi, T. Matsumoto, J. Hori, S. Uno, M. Shoji, T. Uchida, N. Fukumotoa and T. Iguchia, Development of epithermal neutron camera based on resonance-energy-filtered imaging with GEM, 2012, quote: "Epithermal neutrons have energies between 1 eV and 10 keV and smaller nuclear cross sections than thermal neutrons."