Neodymium(III) nitride can be prepared via an exothermic metathesis reaction between lithium nitride and anhydrous neodymium(III) chloride. Lithium chloride formed in the reaction can be removed by THF, a chemical in which lithium chloride dissolves.[5]
NdCl3 + Li3N → NdN + 3 LiCl
It can also be prepared directly when neodymium reacts directly with nitrogen:
2 Nd + N2 → 2 NdN
It can be prepared when decomposing neodymium amide:
Nd(NH2)3 → NdN + N2 + 3H2
It can also be produced when neodymium is ignited in air (which contains nitrogen),[6] but this also produces other compounds, such as neodymium oxide.
^Adachi, Jun; Katayama, Masahito; Kurosaki, Ken; et al. (2008). "Thermal properties of polycrystalline NdN bulk samples with various porosities". Journal of Nuclear Materials. 376 (1). Elsevier BV: 83–87. doi:10.1016/j.jnucmat.2007.12.009. ISSN0022-3115.
^Temmerman, W. M. (2009). "Chapter 241: The Dual, Localized or Band‐Like, Character of the 4f‐States". In Gschneider Jr., K. A. (ed.). Handbook on the Physics and Chemistry of Rare Earths vol 39. Elsevier. pp. 100–110. ISBN978-0-444-53221-3.
^Nasirpouri, Farzad and Nogaret, Alain (eds.) (2011) Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications. World Scientific. ISBN9789814273053