This article is about the class of organic compounds containing a phenol group. For the parent compound, see Phenol.
In biochemistry, naturally occurring phenols are natural products containing at least one phenolfunctional group.[1][2][3] Phenolic compounds are produced by plants and microorganisms.[4] Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding.[5] As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research.[1][5][6][7]: 104 Some phenols are germicidal and are used in formulating disinfectants.
Classification
Various classification schemes can be applied.[8]: 2 A commonly used scheme is based on the number of carbons and was devised by Jeffrey Harborne and Simmonds in 1964 and published in 1980:[8]: 2 [9][10]
C6-C7-C6Diarylheptanoids are not included in this Harborne classification.
They can also be classified on the basis of their number of phenol groups. They can therefore be called simple phenols or monophenols, with only one phenolic group, or di- (bi-), tri- and oligophenols, with two, three or several phenolic groups respectively.
The phenolic unit can be found dimerized or further polymerized, creating a new class of polyphenol. For example, ellagic acid is a dimer of gallic acid and forms the class of ellagitannins, or a catechin and a gallocatechin can combine to form the red compound theaflavin, a process that also results in the large class of brown thearubigins in tea.
Two natural phenols from two different categories, for instance a flavonoid and a lignan, can combine to form a hybrid class like the flavonolignans.
Natural phenols show optical properties characteristic of benzene, e.g. absorption near 270 nm. According to Woodward's rules, bathochromic shifts often also happen suggesting the presence of delocalised π electrons arising from a conjugation between the benzene and vinyls groups.[14]
As molecules with higher conjugation levels undergo this bathochromic shift phenomenon, a part of the visible spectrum is absorbed. The wavelengths left in the process (generally in red section of the spectrum) recompose the color of the particular substance. Acylation with cinnamic acids of anthocyanidins shifted color tonality (CIE Labhue angle) to purple.[15]
Here is a series of UV visible spectra of molecules classified from left to right according to their conjugation level:[citation needed]
The absorbance pattern responsible for the red color of anthocyanins may be complementary to that of green chlorophyll in photosynthetically active tissues such as young Quercus coccifera leaves.[16]
Oxidation
Natural phenols are reactive species toward oxidation, notably the complex mixture of phenolics, found in food for example, can undergo autoxidation during the ageing process. Simple natural phenols can lead to the formation of B type proanthocyanidins in wines[17] or in model solutions.[18][19] This is correlated to the non-enzymatic browning color change characteristic of this process.[20] This phenomenon can be observed in foods like carrot purees.[21]
Browning associated with oxidation of phenolic compounds has also been given as the cause of cells death in calli formed in in vitro cultures. Those phenolics originate both from explant tissues and from explant secretions.
Phenolics are formed by three different biosynthetic pathways: (i) the shikimate/chorizmate or succinylbenzoate pathway, which produces the phenyl propanoid derivatives (C6–C3); (ii) the acetate/malonate or polyketide pathway, which produces the side-chain-elongated phenyl propanoids, including the large group of flavonoids (C6–C3–C6) and some quinones; and (iii) the acetate/mevalonate pathway, which produces the aromatic terpenoids, mostly monoterpenes, by dehydrogenation reactions.[23][24] The aromatic amino acid phenylalanine, synthesized in the shikimic acid pathway, is the common precursor of phenol containing amino acids and phenolic compounds.
In plants, the phenolic units are esterified or methylated and are submitted to conjugation, which means that the natural phenols are mostly found in the glycoside form instead of the aglycone form.
Some acetylations involve terpenes like geraniol.[26] Those molecules are called meroterpenes (a chemical compound having a partial terpenoid structure).
Methylations can occur by the formation of an ether bond on hydroxyl groups forming O-methylated polyphenols. In the case of the O-methylated flavonetangeritin, all of the five hydroxyls are methylated, leaving no free hydroxyls of the phenol group. Methylations can also occur on directly on a carbon of the benzene ring like in the case of poriol, a C-methylated flavonoid.
Some phenols are sold as dietary supplements. Phenols have been investigated as drugs. For instance, Crofelemer (USAN trade name Fulyzaq) is a drug under development for the treatment of diarrhea associated with anti-HIV drugs. Additionally, derivatives have been made of phenolic compound, combretastatin A-4, an anticancer molecule, including nitrogen or halogens atoms to increase the efficacy of the treatment.[29]
Industrial processing and analysis
Biomass
The recovery of natural phenols from biomass residue is part of biorefining.[30]
Analytical methods
Studies on evaluating antioxidant capacity can use electrochemical methods.[31]
A method for phenolic content quantification is volumetric titration. An oxidizing agent, permanganate, is used to oxidize known concentrations of a standard solution, producing a standard curve. The content of the unknown phenols is then expressed as equivalents of the appropriate standard.
Some methods for quantification of total phenolic content are based on colorimetric measurements. Total phenols (or antioxidant effect) can be measured using the Folin-Ciocalteu reaction. Results are typically expressed as gallic acid equivalents (GAE). Ferric chloride (FeCl3) test is also a colorimetric assay.
Lamaison and Carnet have designed a test for the determination of the total flavonoid content of a sample (AlCI3 method). After proper mixing of the sample and the reagent, the mixture is incubated for 10 minutes at ambient temperature and the absorbance of the solution is read at 440 nm. Flavonoid content is expressed in mg/g of quercetin.[34]
Quantitation results produced by the means of diode array detector-coupled HPLC are generally given as relative rather than absolute values as there is a lack of commercially available standards for every phenolic molecules. The technique can also be coupled with mass spectrometry (for example, HPLC–DAD–ESI/MS) for more precise molecule identification.
Antioxidant effect assessment
In vitro measurements
Other tests measure the antioxidant capacity of a fraction. Some make use of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation, which is reactive towards most antioxidants including phenolics, thiols and vitamin C.[35] During this reaction, the blue ABTS radical cation is converted back to its colorless neutral form. The reaction may be monitored spectrophotometrically. This assay is often referred to as the Trolox equivalent antioxidant capacity (TEAC) assay. The reactivity of the various antioxidants tested are compared to that of Trolox, which is a vitamin E analog.
A cellular antioxidant activity (CAA) assay also exists. Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF). The method measures the ability of compounds to prevent the formation of DCF by 2,2'-Azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells.[37]
The phenolic biosynthetic and metabolic pathways and enzymes can be studied by means of transgenesis of genes. The Arabidopsis regulatory gene for production of Anthocyanin Pigment 1 (AtPAP1) can be expressed in other plant species.[41]
Natural occurrences
Phenols are found in the natural world, especially in the plant kingdom.
Aryldialkylphosphatase (also known as organophosphorus hydrolase, phosphotriesterase, and paraoxon hydrolase) uses an aryl dialkyl phosphate and H2O to produce dialkyl phosphate and an aryl alcohol.
The hardening of the protein component of insect cuticle has been shown to be due to the tanning action of an agent produced by oxidation of a phenolic substance forming sclerotin.[citation needed] In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is 3:4-dihydroxybenzoic acid (protocatechuic acid).[62]
In soils, it is assumed that larger amounts of phenols are released from decomposing plant litter rather than from throughfall in any natural plant community.[citation needed] Decomposition of dead plant material causes complex organic compounds to be slowly oxidized lignin-like humus or to break down into simpler forms (sugars and amino sugars, aliphatic and phenolic organic acids), which are further transformed into microbial biomass (microbial humus) or are reorganized, and further oxidized, into humic assemblages (fulvic and humic acids), which bind to clay minerals and metal hydroxides.[citation needed] There has been a long debate about the ability of plants to uptake humic substances from their root systems and to metabolize them.[citation needed] There is now a consensus about how humus plays a hormonal role rather than simply a nutritional role in plant physiology.[citation needed]
In the soil, soluble phenols face four different fates. They might be degraded and mineralized as a carbon source by heterotrophic microorganisms; they can be transformed into insoluble and recalcitrant humic substances by polymerization and condensation reactions (with the contribution of soil organisms); they might adsorb to clay minerals or form chelates with aluminium or iron ions; or they might remain in dissolved form, leached by percolating water, and finally leave the ecosystem as part of dissolved organic carbon (DOC).[4]
Leaching is the process by which cations such as iron (Fe) and aluminum (Al), as well as organic matter, are removed from the litterfall and transported downward into the soil below. This process is known as podzolization and is particularly intense in boreal and cool temperate forests that are mainly constituted by coniferous pines, whose litterfall is rich in phenolic compounds and fulvic acid.[77]
Role in survival
Phenolic compounds can act as protective agents, inhibitors, natural animal toxicants and pesticides against invading organisms, i.e. herbivores, nematodes, phytophagous insects, and fungal and bacterial pathogens. The scent and pigmentation conferred by other phenolics can attract symbiotic microbes, pollinators and animals that disperse fruits.[23]
Defense against predators
Volatile phenolic compounds are found in plant resin where they may attract benefactors such as parasitoids or predators of the herbivores that attack the plant.[78]
In the kelp species Alaria marginata, phenolics act as chemical defence against herbivores.[79] In tropical Sargassum and Turbinaria species that are often preferentially consumed by herbivorousfishes and echinoids, there is a relatively low level of phenolics and tannins.[80] Marine allelochemicals generally are present in greater quantity and diversity in tropical than in temperate regions. Marine algal phenolics have been reported as an apparent exception to this biogeographic trend. High phenolic concentrations occur in brown algae species (orders Dictyotales and Fucales) from both temperate and tropical regions, indicating that latitude alone is not a reasonable predictor of plant phenolic concentrations.[81]
Stilbenes are produced in Eucalyptus sideroxylon in case of pathogens attacks. Such compounds can be implied in the hypersensitive response of plants. High levels of phenolics in some woods can explain their natural preservation against rot.[94]
In plants, VirA is a protein histidine kinase which senses certain sugars and phenolic compounds. These compounds are typically found from wounded plants, and as a result VirA is used by Agrobacterium tumefaciens to locate potential host organisms for infection.[95]
Acetosyringone has been best known for its involvement in plant-pathogen recognition,[98] especially its role as a signal attracting and transforming unique, oncogenic bacteria in genus Agrobacterium.[citation needed] The virA gene on the Ti plasmid in the genome of Agrobacterium tumefaciens and Agrobacterium rhizogenes is used by these soil bacteria to infect plants, via its encoding for a receptor for acetosyringone and other phenolic phytochemicals exuded by plant wounds.[99] This compound also allows higher transformation efficiency in plants, in A. tumefaciens mediated transformation procedures, and so is of importance in plant biotechnology.[100]
Natural phenols can also be found in fatty matrices like olive oil.[101]Unfiltered olive oil has the higher levels of phenols, or polar phenols that form a complex phenol-protein complex.
Phenolic compounds, when used in beverages, such as prune juice, have been shown to be helpful in the color and sensory components, such as alleviating bitterness.[102]
Some advocates for organic farming claim that organically grown potatoes, oranges, and leaf vegetables have more phenolic compounds and these may provide antioxidant protection against heart disease and cancer.[103] However, evidence on substantial differences between organic food and conventional food is insufficient to support claims that organic food is safer or healthier than conventional food.[104][105]
Human metabolism
In animals and humans, after ingestion, natural phenols become part of the xenobiotic metabolism. In subsequent phase II reactions, these activated metabolites are conjugated with charged species such as glutathione, sulfate, glycine or glucuronic acid. These reactions are catalysed by a large group of broad-specificity transferases. UGT1A6 is a human gene encoding a phenol UDP glucuronosyltransferase active on simple phenols.[106] The enzyme encoded by the gene UGT1A8 has glucuronidase activity with many substrates including coumarins, anthraquinones and flavones.[107]
^Chapter eight: "Biosynthesis of terpenophenolic metabolites in hop and cannabis". Jonathan E. Page and Jana Nagel, Recent Advances in Phytochemistry, 2006, Volume 40, pp. 179–210, doi:10.1016/S0079-9920(06)80042-0
^Jeandenis, J.; Pezet, R.; Tabacchi, R. (2006). "Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography–atmospheric pressure photoionisation mass spectrometry". Journal of Chromatography A. 1112 (1–2): 263–8. doi:10.1016/j.chroma.2006.01.060. PMID16458906.
^Talcott, S. T.; Howard, L. R. (1999). "Phenolic Autoxidation is Responsible for Color Degradation in Processed Carrot Puree". Journal of Agricultural and Food Chemistry. 47 (5): 2109–2115. doi:10.1021/jf981134n. PMID10552504.
^Knaggs, Andrew R. (2001). "The biosynthesis of shikimate metabolites (1999)". Natural Product Reports. 18 (3): 334–55. doi:10.1039/b001717p. PMID11476485.
^Lucas, Ricardo; Comelles, Francisco; Alcántara, David; Maldonado, Olivia S.; Curcuroze, Melanie; Parra, Jose L.; Morales, Juan C. (2010). "Surface-Active Properties of Lipophilic Antioxidants Tyrosol and Hydroxytyrosol Fatty Acid Esters: A Potential Explanation for the Nonlinear Hypothesis of the Antioxidant Activity in Oil-in-Water Emulsions". Journal of Agricultural and Food Chemistry. 58 (13): 8021–6. doi:10.1021/jf1009928. hdl:11441/154173. PMID20524658.
^Lu Y; Yan L; Wang Y; Zhou S; Fu J; Zhang J (June 2009). "Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium". Journal of Hazardous Materials. 165 (1–3): 1091–7. Bibcode:2009JHzM..165.1091L. doi:10.1016/j.jhazmat.2008.10.091. PMID19062164.
^Carr, Miriam; Greene, Lisa M.; Knox, Andrew J.S.; Lloyd, David G.; Zisterer, Daniela M.; Meegan, Mary J. (2010). "Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects". European Journal of Medicinal Chemistry. 45 (12): 5752–5766. doi:10.1016/j.ejmech.2010.09.033. PMID20933304.
^Villaverde, J. J.; De Vega, A.; Ligero, P.; Freire, C. S. R.; Neto, C. P.; Silvestre, A. J. D. (2010). "Miscanthus x giganteus Bark Organosolv Fractionation: Fate of Lipophilic Components and Formation of Valuable Phenolic Byproducts". Journal of Agricultural and Food Chemistry. 58 (14): 8279–8285. doi:10.1021/jf101174x. PMID20593898.
^René, Alice; Abasq, Marie-Laurence; Hauchard, Didier; Hapiot, Philippe (2010). "How Do Phenolic Compounds React toward Superoxide Ion? A Simple Electrochemical Method for Evaluating Antioxidant Capacity". Analytical Chemistry. 82 (20): 8703–10. doi:10.1021/ac101854w. PMID20866027.
^Stobiecki, M.; Skirycz, A.; Kerhoas, L.; Kachlicki, P.; Muth, D.; Einhorn, J.; Mueller-Roeber, B. (2006). "Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS". Metabolomics. 2 (4): 197–219. doi:10.1007/s11306-006-0031-5. S2CID39140266.
^"Teneurs en principaux flavonoides des fleurs de Cratageus monogyna Jacq et de Cratageus Laevigata (Poiret D.C.) en Fonction de la vegetation". J. L. Lamaison and A. Carnet, Plantes Medicinales Phytotherapie, 1991, XXV, pages 12–16
^Walker, Richard B.; Everette, Jace D. (2009). "Comparative Reaction Rates of Various Antioxidants with ABTS Radical Cation". Journal of Agricultural and Food Chemistry. 57 (4): 1156–61. doi:10.1021/jf8026765. PMID19199590.
^Meyer, Anne S.; Yi, Ock-Sook; Pearson, Debra A.; Waterhouse, Andrew L.; Frankel, Edwin N. (1997). "Inhibition of Human Low-Density Lipoprotein Oxidation in Relation to Composition of Phenolic Antioxidants in Grapes (Vitis vinifera)". Journal of Agricultural and Food Chemistry. 45 (5): 1638–1643. doi:10.1021/jf960721a.
^Wolfe, K. L.; Liu, R. H. (2007). "Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements". Journal of Agricultural and Food Chemistry. 55 (22): 8896–8907. doi:10.1021/jf0715166. PMID17902627.
^Astrid; von Gadow, Elizabeth Joubert; Hansmann, Chris F. (1997). "Comparison of the Antioxidant Activity of Aspalathin with That of Other Plant Phenols of Rooibos Tea (Aspalathus linearis), α-Tocopherol, BHT, and BHA". J. Agric. Food Chem. 45 (3): 632–638. doi:10.1021/jf960281n.
^Hyršl, Pavel; Büyükgüzel, Ender; Büyükgüzel, Kemal (2007). "The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella". Archives of Insect Biochemistry and Physiology. 66 (1): 23–31. doi:10.1002/arch.20194. PMID17694562.
^Kopácek, Petr; Weise, Christoph; Götz, Peter (1995). "The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme". Insect Biochemistry and Molecular Biology. 25 (10): 1081–1091. Bibcode:1995IBMB...25.1081K. doi:10.1016/0965-1748(95)00040-2. PMID8580908.
^Li, Xiang; Gao, Ming-Jun; Pan, Hong-Yu; Cui, De-Jun; Gruber, Margaret Y. (2010). "Purple Canola: ArabidopsisPAP1Increases Antioxidants and Phenolics in Brassica napus Leaves". Journal of Agricultural and Food Chemistry. 58 (3): 1639–45. doi:10.1021/jf903527y. PMID20073469.
^Production of phenolic compounds by Spirulina maxima microalgae and their protective effects in vitro toward hepatotoxicity model. Abd El-Baky Hanaa H., El Baz Farouk K. and El-Baroty Gamal S., Advances in food sciences, 2009, volume 31, number 1, pp. 8–16, INIST21511068
^Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecký, J.; Vacek, J. (2010). "Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques". Journal of Pharmaceutical and Biomedical Analysis. 51 (2): 464–470. doi:10.1016/j.jpba.2009.03.027. PMID19410410.
^Yoo, H. D.; Ketchum, S. O.; France, D.; Bair, K.; Gerwick, W. H. (2002). "Vidalenolone, a Novel Phenolic Metabolite from the Tropical Red AlgaVidaliasp". Journal of Natural Products. 65 (1): 51–53. doi:10.1021/np010319c. PMID11809064.
^Flavonoids and a proanthrocyanidin from rhizomes of Selliguea feei. Baek Nam-In, Kennelly E. J., Kardono L. B. S., Tsauri S., Padmawinata K., Soejarto D. D. and Kinghorn A. D., Phytochemistry, 1994, vol. 36, no. 2, pp. 513–518, INIST3300075
^Krokene, P.; Nagy, N. E.; Krekling, T. (2008). "Traumatic Resin Ducts and Polyphenolic Parenchyma Cells in Conifers". Induced Plant Resistance to Herbivory. p. 147. doi:10.1007/978-1-4020-8182-8_7. ISBN978-1-4020-8181-1.
^ abNakai, S. (2000). "Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa". Water Research. 34 (11): 3026–3032. Bibcode:2000WatRe..34.3026N. doi:10.1016/S0043-1354(00)00039-7.
^Vogelsang, K.; Schneider, B.; Petersen, M. (2005). "Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton". Planta. 223 (2): 369–373. doi:10.1007/s00425-005-0089-8. PMID16133208. S2CID29302603.
^Aldrich, J. R.; Blum, M. S.; Duffey, S. S.; Fales, H. M. (1976). "Male specific natural products in the bug, Leptoglossus phyllopus: Chemistry and possible function". Journal of Insect Physiology. 22 (9): 1201–1206. Bibcode:1976JInsP..22.1201A. doi:10.1016/0022-1910(76)90094-9.
^Aldrich, J. R.; Blum, M. S.; Fales, H. M. (1979). "Species-specific natural products of adult male leaf-footed bugs (Hemiptera: Heteroptera)". Journal of Chemical Ecology. 5 (1): 53–62. Bibcode:1979JCEco...5...53A. doi:10.1007/BF00987687. S2CID34346907.
^Urinary, temporal gland, and breath odors from Asian elephants of Mudumalai National Park. L. E. L. Rasmussen and V. Krishnamurthy, Gajah, the Journal of the Asian Elephant Specialist Group, January 2001, Number 20, pages 1-8 (article)
^"Musth in elephants". Deepa Ananth, Zoo's print journal, 15(5), pp. 259-262 (articleArchived 2018-06-04 at the Wayback Machine)
^Adams, J.; Garcia, A.; Foote, C. S. (1978). "Some chemical constituents of the secretion from the temporal gland of the African elephant (Loxodonta africana)". Journal of Chemical Ecology. 4 (1): 17–25. Bibcode:1978JCEco...4...17A. doi:10.1007/BF00988256. S2CID45857570.
^C.Michael Hogan (2008) Western poison-oak: Toxicodendron diversilobum, GlobalTwitcher, ed. Nicklas Stromberg "Archived copy". Archived from the original on 2009-07-21. Retrieved 2009-07-21.{{cite web}}: CS1 maint: archived copy as title (link)
^Biogeochemistry: An Analysis of Global Change. 2nd Edition. William H. Schlesinger, Academic Press, 1997, 108, 135, 152–158, 180–183, 191–194
^Plant Resins: Chemistry, evolution, ecology, and ethnobotany, by Jean Langenheim, Timber Press, Portland, Oregon. 2003
^Timperio, A. M.; d’Alessandro, A.; Fagioni, M.; Magro, P.; Zolla, L. (2012). "Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions". Plant Physiology and Biochemistry. 50 (1): 65–71. Bibcode:2012PlPB...50...65T. doi:10.1016/j.plaphy.2011.07.008. PMID21821423.
^Lee, S. K.; Lee, H. J.; Min, H. Y.; Park, E. J.; Lee, K. M.; Ahn, Y. H.; Cho, Y. J.; Pyee, J. H. (2005). "Antibacterial and antifungal activity of pinosylvin, a constituent of pine". Fitoterapia. 76 (2): 258–260. doi:10.1016/j.fitote.2004.12.004. PMID15752644.
^Sakuranetin, a flavonone phytoalexin from ultraviolet-irradiated rice leaves, Kodama O., Miyakawa J., Akatsuka T. and Kiyosawa S., Phytochemistry, 1992, volume 31, number 11, pp. 3807–3809, INIST4682303
^"Biosynthesis and regulation of 3-deoxyanthocyanidin phytoalexins induced during Sorghum-Colletotrichum interaction: Heterologous expression in maize". Chopra Surinder, Gaffoor Iffa, Ibraheem Farag, Poster at the American Society of Plant Biologists (abstractArchived 2011-07-25 at the Wayback Machine)
^Mercier, J.; Arul, J.; Ponnampalam, R.; Boulet, M. (1993). "Induction of 6-Methoxymellein and Resistance to Storage Pathogens in Carrot Slices by UV-C". Journal of Phytopathology. 137: 44–54. doi:10.1111/j.1439-0434.1993.tb01324.x.
^Hoffman, R.; Heale, J. B. (1987). "Cell death, 6-methoxymellein accumulation, and induced resistance to Botrytis cinerea in carrot root slices". Physiological and Molecular Plant Pathology. 30 (1): 67–75. Bibcode:1987PMPP...30...67H. doi:10.1016/0885-5765(87)90083-X.
^Danielone, a phytoalexin from papaya fruit. Echeverri F., Torres F., Quinones W., Cardona G., Archbold R., Roldan J., Brito I., Luis J. G., and Lahlou U. E.-H., Phytochemistry, 1997, vol. 44, no. 2, pp. 255–256, INIST2558881
^Hart, John H.; Hillis, W. E. (1974). "Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon". Phytopathology. 64 (7): 939–48. doi:10.1094/Phyto-64-939.
^Blum, Udo; Shafer, Steven R.; Lehman, Mary E. (1999). "Evidence for Inhibitory Allelopathic Interactions Involving Phenolic Acids in Field Soils: Concepts vs. an Experimental Model". Critical Reviews in Plant Sciences. 18 (5): 673–93. doi:10.1080/07352689991309441.
^Morandi, D. (1996). "Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control". Plant and Soil. 185 (2): 241–305. doi:10.1007/BF02257529. S2CID30091640.
^"Involvement of acetosyringone in plant-pathogen recognition". Baker C. Jacyn, Mock Norton M., Whitaker Bruce D., Roberts Daniel P., Rice Clifford P., Deahl Kenneth L. and Aver'Yanov Andrey A., Biochemical and Biophysical Research Communications, 2005, volume 328, number 1, pp. 130–136, INIST16656426
^Sheikholeslam, S. N.; Weeks, D. P. (1987). "Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens". Plant Molecular Biology. 8 (4): 291–298. doi:10.1007/BF00021308. PMID24301191. S2CID32005770.
^Gutfinger, T. (1981). "Polyphenols in olive oils". Journal of the American Oil Chemists' Society. 58 (11): 966–8. doi:10.1007/BF02659771. S2CID85367601.
^Donovan, Jennifer L.; Meyer, Anne S.; Waterhouse, Andrew L. (1998). "Phenolic Composition and Antioxidant Activity of Prunes and Prune Juice (Prunus domestica)". Journal of Agricultural and Food Chemistry. 46 (4): 1247–1252. doi:10.1021/jf970831x.
^Smith-Spangler, C.; Brandeau, M. L.; Hunter, G. E.; Bavinger, J. C.; Pearson, M.; Eschbach, P. J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; Olkin, I.; Bravata, D. M. (September 4, 2012). "Are organic foods safer or healthier than conventional alternatives?: a systematic review". Annals of Internal Medicine. 157 (5): 348–366. doi:10.7326/0003-4819-157-5-201209040-00007. PMID22944875. S2CID21463708.
^Blair, Robert. (2012). Organic Production and Food Quality: A Down to Earth Analysis. Wiley-Blackwell, Oxford, UK. ISBN978-0-8138-1217-5
^"Cloning and substrate specificity of a human phenol UDP glucuronosyltransferase expressed in COS-7 cells". David Harding, Sylvie Fournel-Gigleux, Michael R. Jackson and Brian Burchell, Proc. Natl. Acad. Sci. USA, November 1988, Volume 85, pp. 8381–8385, (abstract)
The Biochemistry of plant phenolics, by C. F. van Sumere and P. J. Lea, Phytochemical Society of Europe, 1985, Clarendon Press (Google Books, ISBN9780198541707)
Biochemistry of Phenolic Compounds, by Wilfred Vermerris and Ralph Nicholson, 2006, Springer (Google book)
Phenol-Explorer (phenol-explorer.eu), a database dedicated to phenolics found in food by Augustin Scalbert, INRA Clermont-Ferrand, Unité de Nutrition Humaine (Human food unit)
Phenols at ChEBI (Chemical Entities of Biological Interest)
ChEMBLdb, a database of bioactive drug-like small molecules by the European Bioinformatics Institute
IJA 4th Armored Division with Type 3 Chi-Nu tanks and Type 3 Ho-Ni III self-propelled guns vteHistory of the tankEra World War I Interwar World War II Cold War Post–Cold War Country Australia United Kingdom Cuba China Canada New Zealand Czechoslovakia France Germany Iran Iraq Italy Israel Japan Poland North Korea South Korea Soviet Union Spain Sweden United States Ukraine Type Light tank Medium tank Heavy tank Super-heavy tank Cruiser tank Flame tank Infantry tank Main battle tank Tank dest...
Pour un article plus général, voir Mouvement autonome. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article n’est pas rédigé dans un style encyclopédique (juillet 2017). Vous pouvez améliorer sa rédaction ! Symbole des squatters. En France, le mouvement autonome est une mouvance sociale, culturelle et politique d'inspiration anarchiste et situationniste. Le nom de ce mouvement fait référence au concept d’autonomie : autonomie par ...
Stefan Forster (2009) Stefan Forster (* 20. Januar 1958 in Rockenhausen) ist ein deutscher Architekt. Inhaltsverzeichnis 1 Werdegang 2 Bauten 3 Auszeichnungen und Preise 4 Ausstellungen 5 Publikationen (Auswahl) 6 Weblinks 7 Einzelnachweise Werdegang Forster studierte von 1978 bis 1984 Architektur an der Technischen Hochschule Berlin. Nach seinem Studienabschluss verbrachte er einen vom DAAD geförderten Aufenthalt in Venedig. Seine erste Anstellung erhielt Forster im Jahre 1986 im Büro Lang...
artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Air Terjun...
Pour les articles homonymes, voir Régiment Hohenlohe. Pour un article plus général, voir Armée des émigrés. Régiment de Hohenlohe Création 1792 Pays Allégeance Type Chasseurs Fait partie de Armée de Condé Ancienne dénomination Hohenlohe-Schillingsfurts Guerres Guerres de la Révolution et de l’Empire Batailles Bataille de Wattignies Commandant Armand de Firmas-Périès Commandant historique Louis Aloy de Hohenlohe-Waldenburg-Bartenstein modifier Le Régiment de Hohenlohe e...
العلاقات الفلبينية الفيجية الفلبين فيجي الفلبين فيجي تعديل مصدري - تعديل العلاقات الفلبينية الفيجية هي العلاقات الثنائية التي تجمع بين الفلبين وفيجي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الفلبين...
Genus of pterosaur from the Cretaceous period Not to be confused with Cimolopteryx. CimoliopterusTemporal range: Cenomanian~112–94 Ma PreꞒ Ꞓ O S D C P T J K Pg N Holotype snout tip of C. cuvieri shown from the right side and below Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Order: †Pterosauria Suborder: †Pterodactyloidea Clade: †Ornithocheiromorpha Clade: †Lanceodontia Clade: †Ornithocheiriformes Genus: †CimoliopterusRodrigues & Ke...
Komando Distrik Militer 0114/Aceh JayaLambang Korem 012/Teuku UmarNegara IndonesiaAliansiKorem 012/TUCabangTNI Angkatan DaratTipe unitKodimPeranSatuan TeritorialBagian dariKodam Iskandar MudaMakodimAceh JayaPelindungTentara Nasional IndonesiaBaret H I J A U TokohKomandanLetkol Arm. David Eldo Komando Distrik Militer 0114/Aceh Jaya merupakan satuan kewilayahan yang berada dibawah komando Korem 012/Teuku Umar. Kodim 0114/Aceh Jaya memiliki wilayah teritorial yang meliputi Kabupat...
Łodzia coat of arms of the Czarniecki family Czarniecki (feminine form: Czarniecka, plural: Czarnieccy) was a Polish noble family.[1] History Hetman Stefan Czarniecki The Czarniecki family was most prominent in the 17th century and can be traced back to the 14th century. The Łodzia coat of arms was given to the family by King Władysław II Jagiełło. The family name originates from the town of Czarnca in the Świętokrzyskie Voivodeship, Włoszczowa County. Notable members Among m...
Color between orange and green on the visible spectrum of light This article is about the color. For other uses, see Yellow (disambiguation). For technical reasons, Yellow #5 redirects here. For that title, see Yellow No. 5 (disambiguation). Yellow Spectral coordinatesWavelength575–585[1] nmFrequency521–512 THz Color coordinatesHex triplet#FFFF00sRGBB (r, g, b)(255, 255, 0)HSV (h, s, v)(60°, 100%, 100%)CIELChuv (L, C, h)(97, 107, 86°)SourceHTML/CSS[2...
Hồ Văn CườngHồ Văn CườngBiệt danhSứ Giả Cảm XúcCậu Út Gò CôngThông tin cá nhânSinhHồ Văn Cường16 tháng 3 năm 2003 (20 tuổi)Tiền Giang, Việt NamGiới tínhnamQuốc tịchViệt NamNghề nghiệpSinh viênCa sĩSự nghiệp âm nhạcNghệ danhHồ Văn CườngDòng nhạcDân caNhạc vàngNhạc trữ tìnhCa khúcCòn thương rau đắng mọc sau hèWebsite WebsiteHồ Văn Cường trên Facebookxts Hồ Văn Cường (sinh ngày 16 th...
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Maio de 2022) Parte da série sobrePolítica da Sérvia Constituição Executivo Presidente - Aleksandar Vučić Primeiro-ministro - Ana Brnabić Legislativo Assembleia Nacional Judiciário Tribunal Constitucional Eleições Eleições leg...
Німецькі солдати проходять повз Королівський палац у Брюсселі, 1940 Бельгія залишалася нейтральною з початку Другої світової війни до німецького вторгнення на її територію 10 травня 1940 року. 28 травня 1940 року бельгійські збройні сили капітулювали за наказом короля Леополь...
Cameroonian-Italian basketball player Paul EbouaEboua with Victoria Libertas Pesaro in 2019No. 0 – Vanoli CremonaPositionSmall forwardLeagueLBAPersonal informationBorn (2000-02-15) 15 February 2000 (age 23)Yaoundé, CameroonNationalityCameroonian / ItalianListed height2.03 m (6 ft 8 in)Listed weight97 kg (214 lb)Career informationNBA draft2020: undraftedPlaying career2015–presentCareer history2017–2020Stella Azzurra Roma2018–2019→Roseto Sharks20...
Fictional supervillain in the Dragon Ball franchise Fictional character CellDragon Ball characterCell's three forms as seen in the anime; Imperfect (left), Semi-Perfect (right) and Perfect (middle)First appearanceDragon Ball chapter #361 The Mysterious Monster, Finally Appears!!, 16 February 1992 (Weekly Shōnen Jump 1992)Created byAkira ToriyamaVoiced byJapanese: Norio Wakamoto[1]English: Dameon Clarke (Funimation dub)In-universe informationSpeciesArtificial life form (Bio-Android)Fa...
Species of mammal Antelope jackrabbit[1] Conservation status Least Concern (IUCN 3.1)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Lagomorpha Family: Leporidae Genus: Lepus Species: L. alleni Binomial name Lepus alleniMearns, 1890 Antelope jackrabbit range The antelope jackrabbit (Lepus alleni) is a species of North American hare found in southern Arizona and northwestern Mexico that occupies dry desert area...
A Maratha Durbar showing the Chief (Raja) and the nobles (Sardars, Jagirdars, Istamuradars & Mankaris of the state. Maratha Soldiers Mankari (Mānkari or Maankari) is a hereditary title used by Maratha nobles[1][2] and troops[3] from the Indian subcontinent who held land grants, and cash allowances.[4] They held an official position at the Darbar (court) and were entitled to certain ceremonial honours and presents rendered at courts, councils, weddings, fes...
Ethnic group in Indonesia For other uses, see Betawi (disambiguation). Betawi peopleBetawi wedding costume demonstrate both Middle Eastern (groom) and Chinese (bride) influences.Total populationc.7 millionRegions with significant populations Indonesia6,807,968 (2010)[1] Jakarta2.7 million West Java2.6 million ...
National park in Finland Proper region, Finland You can help expand this article with text translated from the corresponding article in Finnish. (April 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do no...
Theoretical physicist This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (February 2019) (Learn how and when to remove this template message) The topic of this ...