Nanofoam

Nanofoams are a class of nanostructured, porous materials (foams) containing a significant population of pores with diameters less than 100 nm. Aerogels are one example of nanofoam.[1]

Metal

Overview

Metallic nanofoams are a subcategorization of nanofoams; more specifically, there are nanofoams consisting of metals, often pure, that form interconnected networks of ligaments that make up the structure of the foam. A variety of metals are used, including copper, nickel, gold, and platinum.[2] Metallic nanofoams may offer certain advantages over alternative polymer nanofoams; structurally, they retain the electrical conductivity of metals, offer increased ductility, as well as the higher surface area and nano-architecture properties offered by nanofoams.[2]

Fabrication

Synthesis of metallic nanofoams may be accomplished through a variety of methods. In 2006, researchers produced metal nanofoams by igniting pellets of energetic metal bis(tetrazolato)amine complexes. Nanofoams of iron, cobalt, nickel, copper, silver, and palladium have been prepared through this technique. These materials exhibit densities as low as 11 mg/cm3, and surface areas as high as 258 m2/g. These foams are effective catalysts[3] and electrocatalyst supports.[4] Also, metal nanofoams can be made by electrodeposition of metals inside templates with interconnected pores, such as 3D-porous anodic aluminum oxide (AAO).[5][6][7] Such method gives nanofoams with an organized structure and allows to control the surface area and porosity of the fabricated material.[8][9][10]

A 2016 study discussed a low temperature/pressure microwave solvothermal method for fabricating pure copper, silver, and nickel metal nanofoams. The process claims to be non-hazardous, novel, as well as facile, with an emphasis on its low-waste and low-cost method of manufacturing.[11]

Additionally, a 2020 publication discussed successful synthesis of nanofoam films from silver, gold, copper, and palladium through the use of a modified vacuum thermal evaporation method.[12]

Applications

Metallic nanofoams have seen a broad variety of applications, including catalysts,[13] hydrogen storage,[14] as well as fuel cells.[15] Additionally, applications of metallic nanofoam as an electrocatalyst have been fruitful; a nickel-iron nanofoam catalyst has proven to exhibit exceptional electrocatalytic performance, as well as water-splitting to isolate hydrogen atoms.[16] Applications to the clean energy industry, specifically for lithium-ion batteries and other fuel cells, have been discussed as well.[11]

Biopolymers

Overview

Through literature discussing the fabrication of a completely porous nanofoam biopolymer is scarce, recent endeavors have resulted in the formation of nanofoam surfaces on biopolymers.[17] In these instances, biopolymers such as collagen and gelatine,[18] chitosan,[19] and pure curcumin[17] have been used to varying degrees.

Fabrication

A 2008 study explored the usage of femtosecond laser irradiation to create permanent spatial arrangements in transparent materials, particularly in its usage to form a singular foamed layer upon biopolymers such as collagen or curcumin.[17] Foaming these surfaces results in a variety of surface modifications that may improve the material's ability for cell adhesion, permeability of fluids due to cell structure, and the formation of nanoscopic fibers.[19]

Additionally, an iron-nitrogen co-doped carbon nanofoam was purposed to be fabricated through the acile salt-assisted pyrolysis process of chitooligosaccharides.[20]

Applications

Foamed biopolymers have multiple purported applications in the biomedical and pharmaceuticals industry due to their modified surface properties. Gelatine films with curcumin dropped upon the surface, for instance, displayed a higher tolerance for ablation following its foaming; this tolerance is suspected to arise from curcumin's binding to proteins to protect from free radicals, as well as its anti-oxidant properties.[17] These findings present implications for greater cellular surgery, as well as the manufacturing of biopolymers as a whole, due to these modifications from plasma irradiation.[17]

Silver

Overview

Silver nanofoams are specific metal nanofoams consisting of mainly silver that are uniquely regarded for their antibacterial and electrical properties. Many of these silver nanofoams are alloys of silver and another metal such as aluminum.[21] They are unique for their hierarchical porous structure are a current point of modern research and development. They have many applications in the fields of mechanical, chemical, and biomedical engineering, including filtration, air management, and use in electrical systems.

Fabrication

The underlying principle is to merge pores of different sizes into a material with a large surface area (thanks to smaller pores), which in turn allows efficient molecular transport (which requires larger pores). The process used to produce these materials is a combination of the replication method, typically used to produce large-pore foams, and the selective dissolution method, generally used to manufacture small-pore foams.[21]

Ag foams with hierarchical porous structures are prepared by the following three-step method:[21]

(i) Packing large spherical NaCl particles to create a hard template, with a distinct perform network of negative space. Then this network is filled with liquid Al-25Ag.  

(ii) Removing the NaCl template by water dissolution to form Al−25Ag macro-porous foam.

(iii) Dissolving the Al-rich phase by a chemical attack with aqueous solutions of HCl or NaOH to form the final Ag foam. This creates the nanoscale pores of the foam.

Applications

Silver ions have been shown to have potent antibacterial activity, and have been shown to affect the growth of Gram-positive and Gram-negative bacteria. This is due to their ability to form ligand complexes with proteins or enzymes in bacterial cells.[21] Due to this unique property, these nanofoams create excellent air filters designed to filter out bacteria and other microorganisms, this level of filtration was shown to be more effective than tradition HCl analogues.[21]

These silver nanofoams have also been used as electrocatalysts for the reduction reaction of CO2 to CO. It was found that on average silver nanofoams can maintain over 90% FECO in a wide potential window (−0.5 to −1.2 VRHE), enabling the maximum CO selective current density of 33 mA cm−2 and the mass activity of 23.5 A gAg−1, which are the highest values among recently reported metal foam-based electrocatalysts.[22]

Carbon

Overview

Carbon nanofoam is an allotrope of carbon discovered in 1997.[23] Its structure consists of a cluster-assembly of carbon atoms strung together in a loose three-dimensional web, similar to an aerogel. The material has a density of 2–10 mg/cm3 (0.0012 lb/ft3), which is among the lightest materials to date.[23][24][25][26][27]

Fabrication

There are multiple formation methods for carbon nanofoams. Pulsed Laser Deposition (PLD) has been the first technique used for the synthesis of carbon nanofoam,[23] and is considered one of the most versatile approach for the production of carbon nanofoams with controlled density and morphology.[27] The process of nanofoam growth via the Pulsed Laser Deposition has been described in terms of a "snowfall-like" mechanism:[26]

(i) Carbon nanoparticles are generated upon laser ablation of a graphite target, either directly of because of the presence of a background atmosphere

(ii) Nanoparticles stick together in micrometric-sized, fractal-like aggregates that grow in-flight within the deposition chamber

(iii) fractal-like aggregates land on a suitable substrate, much like snowflakes land on the ground

(iv) a void-rich, web-like nanofoam is obtained by the layering of fractal-like aggregates


Two of the most common alternatives to PLD synthesis are described below:

Cellulose nanofibers (CNF) were constructed into nanofoams by:[28]

(i) Recycled milk container board was pretreated with deep eutectic solvent (DES) to fibrillate it.

(ii) The pretreated board was put through a simple freezing drying procedure to form a nanofoam shape.

(iii) Fibers are then modified for increased hydrophobicity and reinforced structure by sialylation agents.

A porous carbon nanofoam was created by:[29]

(i) Pitch and CaCO3 (in a 1:14 ratio) were dissolved in methylene chloride. 10mL of NaCl was added. Mixture was stirred continuously.

(ii) Sample was naturally air dried at room temperature.

(iii) Sample was carbonized at 600 °C for 2 hours. The heating rate was 2 °C per minute.

(iv) Carbonized structure is washed in 1M HCl to remove excess CaCO3 nanoparticles.

Applications

Carbon Nanofoams have been shown to have great application as solar steam generators. They possess excellent light absorption, good thermal stability, low density, and low thermal conductivity, all factors important to solar generators. In experiments done, carbon nanofoams showed superior solar photo-thermal performance with an evaporation rate of 1.68 kg m−2 h−1 achieved under 1 sun irradiation.[29]

Additionally, carbon nanofoams have also been used to create extremely efficient aerosol filters. Using cellulose nanofibers collected from recycled milk jugs, researchers were able to develop a carbon nanofoam that achieved a very high filtration efficacy (>99.5%) in tests run with 0.7 wt% nanofoam sample for particles smaller than 360 nm. This efficiency value even meets the standard requirements of the N95 respirator face masks. The structure of the nanofoam filter gives it an advantage in performance over normal filters when dealing with high particle bearing[28]

Glass

In 2014, researchers also fabricated glass nanofoam via femtosecond laser ablation. Their work consisted of raster scanning femtosecond laser pulses over the surface of glass to produce glass nanofoam with ~70 nm diameter wires.[30]

See also

References

  1. ^ Tappan, B.; et al. (2006). "Ultralow-Density Nanostructured Metal Foams: Combustion Synthesis, Morphology, and Composition". J. Am. Chem. Soc. 128 (20): 6589–94. doi:10.1021/ja056550k. PMID 16704258.
  2. ^ a b Ke, H.; Jimenez, A. Garcia; Da Silva, D. A. Rodrigues; Mastorakos, I. (2020-02-01). "Multiscale modeling of copper and copper/nickel nanofoams under compression". Computational Materials Science. 172: 109290. doi:10.1016/j.commatsci.2019.109290. ISSN 0927-0256. S2CID 204306800.
  3. ^ R&D magazine 100 Awards. Access date Aug. 26, 2008.
  4. ^ Zheng, Weiran; Liu, Mengjie; Lee, Lawrence Yoon Suk (9 October 2020). "Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark". ACS Energy Letters. 5 (10): 3260–3264. doi:10.1021/acsenergylett.0c01958. hdl:10397/100121.
  5. ^ Iglesias-Rubianes, L.; Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Ferguson, J.; Beneke, M. (August 2007). "Cyclic oxidation processes during anodizing of Al–Cu alloys". Electrochimica Acta. 52 (24): 7148–7157. doi:10.1016/j.electacta.2007.05.052.
  6. ^ Molchan, Igor S.; Molchan, Tatsiana V.; Gaponenko, Nikolai V.; Skeldon, Peter; Thompson, George E. (May 2010). "Impurity-driven defect generation in porous anodic alumina". Electrochemistry Communications. 12 (5): 693–696. doi:10.1016/j.elecom.2010.03.008.
  7. ^ Vanpaemel, Johannes; Abd-Elnaiem, Alaa M.; De Gendt, Stefan; Vereecken, Philippe M. (2015-01-29). "The Formation Mechanism of 3D Porous Anodized Aluminum Oxide Templates from an Aluminum Film with Copper Impurities". The Journal of Physical Chemistry C. 119 (4): 2105–2112. doi:10.1021/jp508142m. ISSN 1932-7447.
  8. ^ Wang, Wei; Tian, Miao; Abdulagatov, Aziz; George, Steven M.; Lee, Yung-Cheng; Yang, Ronggui (2012-02-08). "Three-Dimensional Ni/TiO 2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications". Nano Letters. 12 (2): 655–660. Bibcode:2012NanoL..12..655W. doi:10.1021/nl203434g. ISSN 1530-6984. PMID 22208851.
  9. ^ Martín, Jaime; Martín-González, Marisol; Francisco Fernández, Jose; Caballero-Calero, Olga (December 2014). "Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina". Nature Communications. 5 (1): 5130. Bibcode:2014NatCo...5.5130M. doi:10.1038/ncomms6130. ISSN 2041-1723. PMC 4770565. PMID 25342247.
  10. ^ Zankowski, Stanislaw P.; Vereecken, Philippe M. (2018-12-26). "Combining High Porosity with High Surface Area in Flexible Interconnected Nanowire Meshes for Hydrogen Generation and Beyond". ACS Applied Materials & Interfaces. 10 (51): 44634–44644. doi:10.1021/acsami.8b15888. ISSN 1944-8244. PMID 30484309. S2CID 53758048.
  11. ^ a b Kreder, K. J.; Manthiram, A. (2017-01-10). "Metal nanofoams via a facile microwave-assisted solvothermal process". Chemical Communications. 53 (5): 865–868. doi:10.1039/C6CC08322F. ISSN 1364-548X. PMID 28000802.
  12. ^ Park, Young Min; Hwang, Se Hoon; Lim, Hana; Lee, Ho-Nyun; Kim, Hyun-Jong (2021-01-12). "Scalable and Versatile Fabrication of Metallic Nanofoam Films with Controllable Nanostructure Using Ar-Assisted Thermal Evaporation". Chemistry of Materials. 33 (1): 205–211. doi:10.1021/acs.chemmater.0c03452. ISSN 0897-4756. S2CID 234249472.
  13. ^ Sen, Sujat; Liu, Dan; Palmore, G. Tayhas R. (2014-09-05). "Electrochemical Reduction of CO 2 at Copper Nanofoams". ACS Catalysis. 4 (9): 3091–3095. doi:10.1021/cs500522g. ISSN 2155-5435.
  14. ^ Soni, B.; Biswas, S. (2017-09-01). "Processing of Open-Cell Metallic Foams for High Pressure Hydrogen Storage". Transactions of the Indian Institute of Metals. 70 (7): 1921–1931. doi:10.1007/s12666-016-1015-4. ISSN 0975-1645. S2CID 138653292.
  15. ^ Tseng, Chung-Jen; Tsai, Bin Tsang; Liu, Zhong-Sheng; Cheng, Tien-Chun; Chang, Wen-Chen; Lo, Shih-Kun (2012-10-01). "A PEM fuel cell with metal foam as flow distributor". Energy Conversion and Management. 62: 14–21. doi:10.1016/j.enconman.2012.03.018. ISSN 0196-8904.
  16. ^ Fu, Shaofang; Song, Junhua; Zhu, Chengzhou; Xu, Gui-Liang; Amine, Khalil; Sun, Chengjun; Li, Xiaolin; Engelhard, Mark H.; Du, Dan; Lin, Yuehe (2018-02-01). "Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte". Nano Energy. 44: 319–326. doi:10.1016/j.nanoen.2017.12.010. ISSN 2211-2855.
  17. ^ a b c d e Gaspard, Solenne; Forster, Magdalena; Huber, Christoph; Zafiu, Christian; Trettenhahn, Günter; Kautek, Wolfgang; Castillejo, Marta (2008-10-10). "Femtosecond laser processing of biopolymers at high repetition rate". Physical Chemistry Chemical Physics. 10 (40): 6174–6181. Bibcode:2008PCCP...10.6174G. doi:10.1039/B807870J. ISSN 1463-9084. PMID 18846308.
  18. ^ Gaspard, S.; Oujja, M.; de Nalda, R.; Castillejo, M.; Bañares, L.; Lazare, S.; Bonneau, R. (2008-05-30). "Nanofoaming dynamics in biopolymers by femtosecond laser irradiation". Applied Physics A. 93 (1): 209. Bibcode:2008ApPhA..93..209G. doi:10.1007/s00339-008-4649-1. hdl:10261/121092. ISSN 1432-0630. S2CID 97550668.
  19. ^ a b Lazare, S.; Bonneau, R.; Gaspard, S.; Oujja, M.; De Nalda, R.; Castillejo, M.; Sionkowska, A. (2008-11-15). "Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers". Applied Physics A. 94 (4): 719. doi:10.1007/s00339-008-4950-z. ISSN 1432-0630. S2CID 49237185.
  20. ^ Xu, Huaxing; Li, Yinshi; Wang, Rui (2019-10-08). "Pore-rich iron-nitrogen-doped carbon nanofoam as an efficient catalyst towards the oxygen reduction reaction". International Journal of Hydrogen Energy. 44 (48): 26285–26295. doi:10.1016/j.ijhydene.2019.08.104. ISSN 0360-3199. S2CID 202879093.
  21. ^ a b c d e Durmus, Fatma Cagla; Molina Jordá, José Miguel (2021-08-04). "Silver Foams with Hierarchical Porous Structures: From Manufacturing to Antibacterial Activity". ACS Applied Materials & Interfaces. 13 (30): 35865–35877. doi:10.1021/acsami.1c06057. ISSN 1944-8244. PMC 8397256. PMID 34292700.
  22. ^ Wei, Li; Li, Hao; Chen, Junsheng; Yuan, Ziwen; Huang, Qianwei; Liao, Xiaozhou; Henkelman, Graeme; Chen, Yuan (2020-01-17). "Thiocyanate-Modified Silver Nanofoam for Efficient CO2 Reduction to CO". ACS Catalysis. 10 (2): 1444–1453. doi:10.1021/acscatal.9b04633. ISSN 2155-5435. S2CID 210721421.
  23. ^ a b c Rode, A.V.; Hyde, S.T.; Gamaly, E.G.; Elliman, R.G.; McKenzie, D.R.; Bulcock, S. (1999). "Structural analysis of a carbon foam formed by high pulse-rate laser ablation". Applied Physics A: Materials Science & Processing. 69 (7): S755–S758. doi:10.1007/s003390051522. S2CID 96050247.
  24. ^ Zani, A.; Dellasega, D.; Russo, V.; Passoni, M. (2013). "Ultra-low density carbon foams produced by pulsed laser deposition". Carbon. 56: 358–365. doi:10.1016/j.carbon.2013.01.029.
  25. ^ Zani, A.; Dellasega, D.; Russo, V.; Passoni, M. (2013). "Ultra-low density carbon foams produced by pulsed laser deposition". Carbon. 56: 358–365. doi:10.1016/j.carbon.2013.01.029.
  26. ^ a b Maffini, A.; Pazzaglia, A.; Dellasega, D.; Russo, V.; Passoni, M. (2019-08-30). "Growth dynamics of pulsed laser deposited nanofoams". Physical Review Materials. 3 (8): 083404. Bibcode:2019PhRvM...3h3404M. doi:10.1103/PhysRevMaterials.3.083404. hdl:11311/1101589. S2CID 202973218.
  27. ^ a b Maffini, A.; Orecchia, D.; Pazzaglia, A.; Zavelani-Rossi, M.; Passoni, M. (2022-10-15). "Pulsed laser deposition of carbon nanofoam". Applied Surface Science. 599: 153859. Bibcode:2022ApSS..59953859M. doi:10.1016/j.apsusc.2022.153859. hdl:11311/1220455. ISSN 0169-4332.
  28. ^ a b Ukkola, Jonne; Lampimäki, Markus; Laitinen, Ossi; Vainio, Tomi; Kangasluoma, Juha; Siivola, Erkki; Petäjä, Tuukka; Liimatainen, Henrikki (2021-08-10). "High-performance and sustainable aerosol filters based on hierarchical and crosslinked nanofoams of cellulose nanofibers". Journal of Cleaner Production. 310: 127498. doi:10.1016/j.jclepro.2021.127498. ISSN 0959-6526. S2CID 236305251.
  29. ^ a b Chen, Lihua; Zhao, Shujing; Hasi, Qi‐Meige; Luo, Xiaofang; Zhang, Chuantao; Li, Hailing; Li, An (May 2020). "Porous Carbon Nanofoam Derived From Pitch as Solar Receiver for Efficient Solar Steam Generation". Global Challenges. 4 (5): 1900098. doi:10.1002/gch2.201900098. ISSN 2056-6646. PMC 7175018. PMID 32328289.
  30. ^ Grant-Jacob, James A.; Mills, Ben; Eason, Robert W. (2014-01-01). "Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation". Journal of Physics D: Applied Physics. 47 (5): 055105. Bibcode:2014JPhD...47e5105G. doi:10.1088/0022-3727/47/5/055105. ISSN 0022-3727. S2CID 120615955.

Read other articles:

L LawlietElle nell'anime UniversoDeath Note Nome orig.エル ローライト (Eru Rōraito) Lingua orig.Giapponese AutoreTsugumi Ōba DisegniTakeshi Obata EditoreShūeisha 1ª app. inConfronto Ultima app. inNuovo mondo Interpretato daKen'ichi Matsuyama (live action giapponesi) Kento Yamazaki (television drama) Lakeith Stanfield (live action statunitense) Voce orig.Kappei Yamaguchi Voci italianeStefano Crescentini Vito Ventura (live action giapponesi) Emanuele Ruzza (live act...

 

Zoological park in Colorado Springs, Colorado, United States Cheyenne Mountain ZooCheyenne Mountain Zoo LogoRobust giraffe conservation program at the zoo38°46′12″N 104°51′18″W / 38.77°N 104.855°W / 38.77; -104.855Date opened1926LocationColorado Springs, Colorado, United StatesLand area140 acres (57 ha) (40 acres (16 ha) in use)[1]No. of animals750[2]No. of species170[2]Annual visitors600,000+[3]MembershipsAZA[4...

 

Harry Ward Plaats uw zelfgemaakte foto hier Persoonlijke informatie Bijnaam Big H Geboortedatum 13 juni 1997 Geboorteplaats Burton-upon-Trent, Engeland Sport Darts Dartsinformatie Speelt sinds 2012 Pijlen 22g Unicorn Lateraliteit Rechtshandig Opkomstnummer A Little Respect - Erasure Organisatie PDC 2014-2020 PDC-hoofdtoernooien – Beste prestaties World Ch'ship Laatste 64: 2020 UK Open Laatste 64: 2018, 2020 Players Ch'Finals Laatste 64: 2019 World Series Finals Laatste 24: 2020 Portaal...

Paul Gavarni: Le Flâneur, 1842 Der Flaneur (aus französisch flâner ‚umherstreifen, umherschlendern‘) ist ein Mensch, der im Spazierengehen schaut, genießt und planlos umherschweift – er flaniert. Inhaltsverzeichnis 1 Gegenstandsbestimmung 2 Geschichte 3 Siehe auch 4 Literatur 5 Sekundärliteratur 6 Weblinks 7 Einzelnachweise Gegenstandsbestimmung Der Flaneur bezeichnet eine literarische Figur, die durch Straßen und Passagen der Großstädte mit ihrer anonymen Menschenm...

 

Wendelinuskapelle Detail der Kapelle – der Heilige Wendelin Die Wendelinuskapelle ist eine Kapelle im Ortsteil Winterscheid der Gemeinde Ruppichteroth. Sie ist nach dem Heiligen Wendelin benannt. Inhaltsverzeichnis 1 Geschichte 2 Literatur 3 Weblinks 4 Einzelnachweise Geschichte 1805/06 errichtete an dieser Stelle der Schreiner und Bildschnitzer Peter Richarz (1743–1816) aus Winterscheiderbröl auf eigene Kosten ein Heiligenhäuschen, das Wendelin gewidmet war. Das kleine Kapellchen stand...

 

AKU-94 Jenis Senapan serbu Negara asal  Amerika Serikat Sejarah produksi Perancang KVAR Produsen KVAR Diproduksi 1990-an hingga pertengahan 2000-an Spesifikasi Berat 4,53 kg[1](bervariasi) Peluru 7.62×39mm Kaliber 7.62mm Mekanisme Operasi gas, baut berputar Kecepatan peluru 710 m/s Amunisi Magasen dan drum AK 7.62×39mm Alat bidik Bidikan besi AKU-94 adalah senapan serbu bullpup berbasis AK yang dibuat dan diproduksi oleh KVAR. Senapan ini menggunakan peluru 7...

Correo Imperial Alemán Deutsche Reichspost Logotipo del Deutsche Reichspost, 1925. Otros nombres Kaiserliches PostamtTipo Servicio postalIndustria CorreoFundación 1866Disolución 1945Sede central  Berlín (Alemania)Cronología Correo Imperial Alemán→ Correo AlemánCorreo Alemán de Berlín [editar datos en Wikidata]Logotipo del Kaiserliches Postamt, circa 1900 Reichspost («Correo Imperial» en alemán) fue el nombre del servicio postal de Alemania entre los años 186...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Richmond Centre mall – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this template message) Shopping mall in British Columbia, CanadaRichmond CentreSoutheast entrance of Richmond CentreLocationRichmond, British Colum...

 

1997 American filmYellowDVD coverDirected byChris Chan LeeWritten byChris Chan LeeProduced byChris Chan LeeDavid YangStarringSoon-Tek OhAmy HillMichael ChungBurt BulosAngie SuhMia SuhJason TobinLela LeeMary ChenJohn ChoCinematographyTed CohenEdited byKenn KashimaMusic byLance HahnProductioncompanyDefector FilmsDistributed byPhaedra CinemaRelease dates March 8, 1997 (1997-03-08) (CAAMFest) May 29, 1998 (1998-05-29) (United States) Running time90 minutesCou...

The Princess of Carignano was a woman married to the Prince of Carignano of the House of Savoy. The list ends with Charles Albert, in 1831, after he became King of Sardinia. But the Queens of Sardinia and later Italy used the title Princess of Carignano as part of their full title which included a lot of other titles. The fief of Carignano had belonged to the counts of Savoy since 1418;[1] Carignano was erected by Charles Emmanuel I, Duke of Savoy into a principality as an appanage fo...

 

Toyota Motor East Japan, Inc.Nama asliトヨタ自動車東日本株式会社Nama latinToyota Jidōsha Higashi Nihon Kabushiki-gaishaJenisAnak perusahaanIndustriOtomotifPendahuluCentral MotorsKanto Auto WorksToyota Motors TohokuDidirikan1 Juli 2012KantorpusatŌhira, Miyagi, JepangTokohkunciKazuhiro Miyauchi (Presiden)ProdukMobil, mesin, suku cadang kendaraanProduksiSekitar 467.000 kendaraan[1] (2018)Pendapatan¥817.03 milyar[note 1][2] (FY2018)Laba operasi¥9...

 

Не следует путать с Mitsubishi Pajero Sport. Mitsubishi Pajero Общие данные Производитель Mitsubishi Motors Годы производства 1981—2021[1] Сборка Mitsubishi Motors Класс Полноразмерный внедорожник Иные обозначения Mitsubishi MonteroMitsubishi Shogun Дизайн и конструкция Тип кузова 5‑дв. SUV (5‑мест.)3‑дв. SUV (5‑мес...

伊斯霍伊市鎮(丹麥語:Ishøj Kommune)是丹麥的一個市鎮,位於西蘭島東北部,位於哥本哈根西南,臨克厄灣,屬首都大區。面積25.94平方公里,2009年人口20,756人。行政中心的伊斯霍伊。 外部链接 官方網頁 查论编 丹麥市镇 首都大区 阿爾貝特斯隆 阿勒勒 巴勒魯普 博恩霍爾姆 布伦比 哥本哈根 德拉厄 艾厄代 弗雷登斯堡 腓特烈斯贝 腓特烈松 富勒斯 根措夫特 格萊薩克瑟...

 

Indian author, journalist, editor Anindita GhoseOccupationAuthor, JournalistLanguageEnglishNationalityIndianNotable worksThe IlluminatedWebsiteaninditaghose.com Anindita Ghose is an Indian author, journalist, and editor based in Mumbai. Her debut novel, The Illuminated, was published in 2021 in India and internationally in 2023. Biography Ghose completed an MA in Linguistics from the University of Mumbai, as well as an MA in Arts & Culture Journalism from the Columbia University's Graduat...

 

U.S. House district for Texas TX-26 redirects here. The term may also refer to Texas State Highway 26. Not to be confused with Texas's 26th House of Representatives district. Texas's 26th congressional districtTexas' 26th congressional district - since January 3, 2023.Representative  Michael C. BurgessR–Pilot PointDistribution93.4% urban[1]6.6% ruralPopulation (2022)835,578[2]Median householdincome$105,363[3]Ethnicity67.99% White18.4% Hispanic7.19% Black5.91% As...

Bille AugustLahir9 November 1948 (umur 75)Brede, DenmarkPekerjaanSutradaraTahun aktif1978–sekarangSuami/istriPernilla August ​ ​(m. 1991⁠–⁠1997)​Masja DessauAnnie MunksgaardSara-Marie Maltha (?–sekarang)Anak8 Bille August (kelahiran 9 November 1948) adalah seorang sutradara televisi dan film pemenang Academy Award asal Denmark. Filmnya Pelle the Conqueror dari 1987 memenangkan Palme d'Or, Academy Award dan Golden Globe. Ia ...

 

一場於德國斯圖加特舉行的模擬聯合國會議 模擬聯合國(英語:Model United Nations,缩写MUN)是一種學術性質活動,藉由精簡後的聯合國議規舉行模擬會議,使與會者瞭解多邊外交的過程,培養分析公民議題的能力,促進世界各地學生的交流,增進演講和辯論能力,提高组织、策划、管理、研究和写作、解决冲突、求同存异的能力[1],訓練批判性思考、團隊精神和領導才...

 

Три возраста и смертьГанс Бальдунг, 1540—1543музей Прадо, Мадрид В статье есть список источников, но в этом разделе не хватает сносок. Без сносок сложно определить, из какого источника взято каждое отдельное утверждение. Вы можете улучшить статью, проставив сноски на источн...

Guy Maddin Rođenje 28. veljače 1956., Winnipeg, Manitoba, Kanada Zanimanje redatelj, scenarist, snimatelj, montažer Godine rada 1986. - Portal o životopisima Portal o filmskoj umjetnosti Guy Maddin (Winnipeg, Manitoba, Kanada, 28. veljače 1956.), kanadski filmski redatelj, scenarist, snimatelj i montažer. Poznat je po sklonosti ka rekreiranju izgleda i stila filmova iz ere nijemog filma i početka zvučnog razdoblja, što mu je donijelo popularnost i pohvale u alternativnim filmskim kr...

 

Ante Šarić, Pula Open 2011 Ante Šarić (* 6. April 1984 in Split) is en kroaatsch Schachspeler. In' Juli 2003 wurr he in Rabac kroaatsch U19-Meester.[1] För de kroaatsch Natschonalmannschap speel he van 2004 bit 2010 bi söben Mitropa-Cups. 2004, 2008 un 2009 wunn Kroatien dat Turnier, 2005 keem de Mannschap up den tweeten Platz un 2006 up Platz dree. Šarić kreeg individuelle Goldmedaillen 2004 för sien Ergevnis vun 6 ut 8 an dat veert Brett un 2007 för sien Ergevnis vun 5 ut ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!