Mumbai North West Lok Sabha constituency
|
Read other articles:
Ewald von Demandowsky (1937) Kameradschaftsabend anlässlich der Tagung der Reichsfilmkammer in der Kameradschaft der Deutschen Künstler in Berlin am 4. März 1938; v.l. Fita Benkhoff, Ewald von Demandowsky und Hilde Krüger, Aufnahme aus dem Bundesarchiv Ewald von Demandowsky (* 21. Oktober 1906 in Berlin; † 7. Oktober 1946 ebenda) war deutscher Reichsfilmdramaturg und Produktionschef der Tobis zur Zeit des Nationalsozialismus. Inhaltsverzeichnis 1 Leben 2 Werke 3 Literatur 4 Film 5 Webli...
一般県道 和歌山県道804号貴志川自転車道線 地図 制定年 2013年 道路の方角 南 北端 紀の川市桃山町段 主な経由都市 紀の川市 南端 紀の川市貴志川町神戸 ■テンプレート(■ノート ■使い方) ■PJ道路 和歌山県道804号貴志川自転車道線(わかやまけんどう804ごう きしがわじてんしゃどうせん)は、和歌山県紀の川市を走る自転車道の県道の1つである。 和歌山県の県道の
For the American Authors song, see Best Day of My Life. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Best Day of My Life – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 2002 Italian filmThe Best Day of My LifeDirected byCristina ComenciniWr...
Chromium(II) iodide Names Other names chromous iodide Identifiers CAS Number 13478-28-9 3D model (JSmol) Interactive image ChemSpider 13318420 PubChem CID 18626753 CompTox Dashboard (EPA) DTXSID20595261 InChI InChI=1S/Cr.2HI/h;2*1H/q+2;;/p-2Key: BMSDTRMGXCBBBH-UHFFFAOYSA-L SMILES [Cr+2].[I-].[I-] Properties Chemical formula CrI2 Molar mass 305.8050 g·mol−1 Appearance black deliquescent solid Density 5.196 g/cm3 Except where otherwise noted, data are given for materials in ...
Filipino politician For his father, see Juanito Remulla. In this Philippine name, the middle name or maternal family name is Catibayan and the surname or paternal family name is Remulla. The HonorableJonvic RemullaGovernor of CaviteIncumbentAssumed office June 30, 2019Vice GovernorJolo Revilla (2019–2022) Athena Tolentino (2022–present)Preceded byJesus Crispin RemullaIn officeJune 30, 2010 – June 30, 2016Vice GovernorRecto Cantimbuhan (2010–2013) Jolo Revilla (20...
Food consisting of sweet honey still in its wax comb A plate of comb honey Comb honey is honey intended for consumption by humans, which is still contained within its original hexagonal-shaped beeswax cells, called honeycomb. It has received no processing, filtering, or manipulation, and is in the state that honey bees have produced it. Comb honey production using Ross Round style equipment: center comb is complete, right in progress Before the invention of the honey extractor almost all hone...
Prime Minister of New Zealand from 1989 to 1990 For other people with the same name, see Geoffrey Palmer (disambiguation). The Right Honourable SirGeoffrey PalmerKCMG AC KCPalmer in 202033rd Prime Minister of New ZealandIn office8 August 1989 – 4 September 1990MonarchElizabeth IIGovernor-GeneralPaul ReevesDeputyHelen ClarkPreceded byDavid LangeSucceeded byMike Moore10th Deputy Prime Minister of New ZealandIn office26 July 1984 – 8 August 1989Prime MinisterDavid L...
Sample of calcium chloride, showing its tendency to cake. Caking is a powder's tendency to form lumps or masses. The formation of lumps interferes with packaging, transport, flowability, and consumption.[1][2] Usually caking is undesirable, but it is useful when pressing powdered substances into pills or briquettes. Granular materials can also be subject to caking, particularly those that are hygroscopic such as salt, sugar, and many chemical fertilizers. Anticaking agents are...
Goodge Street Goodge Street (Metropolitano de Londres)Entrada pela Tottenham Court Road Linha Northern line Plataformas 2 Zona tarifária Travelcard Zone 1 Goodge Street é uma estação do Metropolitano de Londres. Faz parte da Northern line, entre Warren Street e Tottenham Court Road, na Zona 1 do Travelcard. História Foi inaugurada em 22 de junho de 1907 como Tottenham Court Road pela Charing Cross, Euston and Hampstead Railway, mas mudou para o nome atual em 9 de março de 1908[1][2] ant...
The topic of this article may not meet Wikipedia's notability guideline for biographies. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Viraj Mithani – news · newspapers · books · scholar · JSTOR (Novemb...
Thị trường tài chính Thị trường đại chúng Sàn giao dịch Chứng khoán Thị trường trái phiếu Định giá trái phiếu Trái phiếu doanh nghiệp Thu nhập cố định Trái phiếu chính phủ Trái phiếu chuyển đổi Nợ lãi suất cao Trái phiếu đô thị Thị trường cổ phiếu Cổ phiếu phổ thông Cổ phiếu ưu đãi Cổ phần đăng ký Cổ phiếu Chứng nhận cổ phần Sàn giao dịch chứng khoán Cổ phần có quy...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Munshiganj Sadar Upazila – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) Upazila in Dhaka Division, BangladeshMunshiganj Sadar মুন্সীগঞ্জ সদরUpazilaMunshiganj SadarLocation ...
Type of discretization method A 2D non-compact stencil In numerical mathematics, a non-compact stencil is a type of discretization method, where any node surrounding the node of interest may be used in the calculation. Its computational time grows with an increase of layers of nodes used. Non-compact stencils may be compared to Compact stencils.[1][2] See also Nine-point stencil Five-point stencil References ^ W. F. Spotz. High-Order Compact Finite Difference Schemes for Compu...
Romanian-born American tennis player Edina Gallovits-HallGallovits-Hall at the 2015 Wimbledon ChampionshipsFull nameKlaudia Edina Gallovits-HallCountry (sports) Romania (1999–2014) United States (2015)ResidenceAtlanta, Georgia, U.S.Born (1984-12-10) December 10, 1984 (age 38)Timișoara, RomaniaHeight1.65 m (5 ft 5 in)Turned pro1999PlaysRight-handed (two-handed backhand)Prize money$1,294,978SinglesCareer record419–262 (61.5%)Career ti...
2017 Philippine proclamation of martial law on Mindanao (ended 2019) This article contains too many or overly lengthy quotations. Please help summarize the quotations. Consider transferring direct quotations to Wikiquote or excerpts to Wikisource. (May 2017) Proclamation No. 216 Long title Declaring a State of Martial Law and Suspending the Privilege of the Writ of Habeas Corpus in the Whole of Mindanao CitationProclamation No. 216, s. 2017Territorial extentWhole of MindanaoSigned byRodr...
American judge and politician Pat McCarranUnited States Senatorfrom NevadaIn officeMarch 4, 1933 – September 28, 1954Preceded byTasker OddieSucceeded byErnest S. BrownChief Justice of the Supreme Court of NevadaIn officeJanuary 2, 1917 – January 4, 1919Preceded byFrank Herbert NorcrossSucceeded byBenjamin Wilson ColemanJustice of the Supreme Court of NevadaIn officeJanuary 2, 1913 – January 1, 1917Preceded byJames G. SweeneySucceeded byEdward A. DuckerNye Coun...
Línea Marunouchi 丸ノ内線 Un tren de la serie 02 de la línea MarunouchiLugarUbicación Tokio, JapónDescripciónTipo MetroInauguración 20 de enero de 1954Inicio OgikuboFin IkebukuroCaracterísticas técnicasLongitud 27,4 kmEstaciones 28 (Incluyendo el ramal)Ancho de vía 1.435 mm (ancho estándar)ExplotaciónPasajeros 1.089.257/día (2010)[1]Flota Serie 02Velocidad media 75km/hOperador Tokyo Metro, Buró de transporte de TokioMapa Líneas relacionadas Metro de Tokio: Metro Toeí...
City in California, United States Twentynine Palms redirects here. For other uses, see Twentynine Palms (disambiguation). City in California, United StatesTwentynine Palms, CaliforniaCityTwentynine Palms looking east on Highway 62 SealMotto: A Beautiful Desert OasisLocation in San Bernardino County and the state of CaliforniaTwentynine Palms, CaliforniaLocation in the United StatesCoordinates: 34°08′08″N 116°03′15″W / 34.13556°N 116.05417°W / 34.13556;...
Bagian dari seri tentangAgama Buddha Sejarah dan PenyebaranGaris waktu • Sidang agung • Asia Tenggara • Asia Timur • Tibet • Asia Tengah • Indonesia • Dunia Barat AliranTheravāda • Mahāyāna • Vajrāyāna • Sthaviravāda • Mahāsāṃghika Konsep UtamaTiga Permata • Ketuhanan • Lima Hukum Alam • Puasa • Saṃsāra • Tiga Corak Umum • Lima Agregat • Hukum Sebab Musaba...
この項目では、Figma, Inc.が開発したソフトウェアについて説明しています。マックスファクトリーが企画・開発したアクションフィギュアシリーズについては「Figma」をご覧ください。 Figma 作者 Figma, Inc.公式サイト 公式サイトテンプレートを表示 Figma は、ブラウザベースのコラボレーション・インターフェース・デザイン・ツールである。MacOSまたはWindows用のデスクト...