Moshe Zakai

Moshe Zakai
Born(1926-12-22)22 December 1926
Died27 November 2015(2015-11-27) (aged 88)
Haifa, Israel
NationalityIsraeli
Alma materUniversity of Illinois at Urbana–Champaign
SpouseShulamit (Mita) Briskman
Scientific career
FieldsElectrical engineering
InstitutionsTechnion

Moshe Zakai (December 22, 1926 – November 27, 2015) was a Distinguished Professor at the Technion, Israel in electrical engineering, member of the Israel Academy of Sciences and Humanities and Rothschild Prize winner.[1]

Biography

Moshe Zakai was born in Sokółka, Poland, to his parents Rachel and Eliezer Zakheim with whom he immigrated to Israel in 1936. He got the BSc degree in electrical engineering from the Technion – Israel Institute of Technology in 1951. He joined the scientific department of the Defense Minister of Israel, where he was assigned to research and development of radar systems. From 1956 to 1958, he did graduate work at the University of Illinois on an Israeli Government Fellowship, and was awarded the PhD in electrical engineering. He then returned to the scientific department as head of the communication research group. In 1965, he joined the faculty of the Technion as an associate professor. In 1969, he was promoted to the rank of professor and in 1970, he was appointed the holder of the Fondiller Chair in Telecommunication. He was appointed distinguished professor in 1985. From 1970 until 1973, he served as the dean of the faculty of Electrical Engineering, and from 1976 to 1978 he served as vice president of academic affairs. He retired in 1998 as distinguished professor emeritus.

Moshe Zakai was married to Shulamit (Mita) Briskman, they have 3 children and 12 grandchildren.

Major awards

Research

Background

Zakai's main research concentrated on the study of the theory of stochastic processes and its application to information and control problems; namely, problems of noise in communication radar and control systems. The basic class of random processes which represent the noise in such systems are known as "white noise" or the "Wiener process" where the white noise is "something like a derivative" of the Wiener process. Since these processes vary quickly with time, the classical differential and integral calculus is not applicable to such processes. In the 1940s Kiyoshi Itō developed a stochastic calculus (the Ito calculus) for such random processes.

The relation between classical and Ito calculi

From the results of Ito it became clear, back in the 1950s, that if a sequence of smooth functions which present the input to a physical system converge to something like a Brownian motion, then the sequence of outputs of the system do not converge in the classical sense. Several papers written by Eugene Wong and Zakai clarified the relation between the two approaches. This opened up the way to the application of the Ito calculus to problems in physics and engineering.[4] These results are often referred to as Wong-Zakai corrections or theorems.

Nonlinear filtering

The solution to the problem of the optimal filtering of a wide class of linear dynamical system is known as the Kalman filter. This led to the same problem for nonlinear dynamical systems. The results for this case were highly complicated and were initially studied by Stratonovich in 1959 - 1960 and later by Kushner in 1964, leading to the Kushner-Stratonovich equation, a non-linear stochastic partial differential equation (SPDE) for the conditional probability density representing the optimal filter. Around 1967, Zakai derived a considerably simpler SPDE for an unnormalized version of the optimal filter density. It is known as the Zakai equation,[5] and it has the great advantage of being a linear SPDE. The Zakai equation has been the starting point for further research work in this field.

Comparing practical solutions with the optimal solution

In many cases the optimal design of communication or radar operating under noise is too complicated to be practical, while practical solutions are known. In such cases it is extremely important to know how close the practical solution is to the theoretically optimal one.

Extension of the Ito calculus to the two-parameter processes

White noise and Brownian motion (the Wiener process) are functions of a single parameter, namely time. For problems such as rough surfaces it is necessary to extend the Ito calculus to two parameter Brownian sheets. Several papers which he wrote jointly with Wong extend the Ito integral to a "two-parameter" time. They also showed that every functional of the Brownian sheet can be represented as an extended integral.[6][7]

The Malliavin calculus and its application

In addition to the Ito calculus, Paul Malliavin developed in the 1970s a "stochastic calculus of variations", now known as the Malliavin calculus. It turned out that in this setup it is possible to define a stochastic integral which will include the Ito integral. The papers of Zakai with David Nualart, Ali Süleyman Üstünel and Zeitouni promoted the understanding and applicability of the Malliavin calculus.[8][9][10][11][12]

The monograph of Üstünel and Zakai[13] deals with the application of the Malliavin calculus to derive relations between the Wiener process and other processes which are in some sense "similar" to the probability law of the Wiener process.

In the last decade he extended to transformations which are in some sense a "rotation" of the Wiener process[14][15] and with Ustunel extended to some general cases results of information theory which were known for simpler spaces.[16]

Further information

  • On his life and research, see pages xi–xiv of the volume in honor of Zakai's 65 birthday.
  • For the list of publications until 1990, see pages xv–xx. For publications between 1990 and 2000, see [17]. For later publications search for M Zakai in arXiv.

References

  1. ^ "Obituary: Moshe Zakai, 1926–2015". IMS Bullentin. Retrieved 5 January 2016.
  2. ^ "IEEE Control Systems Award Recipients" (PDF). IEEE. Archived from the original (PDF) on June 19, 2010. Retrieved March 30, 2011.
  3. ^ "IEEE Control Systems Award". IEEE Control Systems Society. Archived from the original on December 29, 2010. Retrieved March 30, 2011.
  4. ^ Wong, Eugene; Moshe Zakai (July 1965). "On the relation between ordinary and stochastic differential equations". International Journal of Engineering Science. 3 (2): 213–229. doi:10.1016/0020-7225(65)90045-5.
  5. ^ Zakai, Moshe (1969). "On the optimal filtering of diffusion processes". Probability Theory and Related Fields. 11 (3): 230–243. doi:10.1007/BF00536382.
  6. ^ Wong, Eugene; Zakai, Moshe (1976). "Weak Martingales and Stochastic Integrals in the Plane". Annals of Probability. 4 (4): 570–586. doi:10.1214/aop/1176996028.
  7. ^ Merzbach, Ely; Moshe Zakai (1980). "Predictable and dual predictable projections of two-parameter stochastic processes". Probability Theory and Related Fields. 53 (3): 263–269. doi:10.1007/BF00531435.
  8. ^ Nualart, David; Zakai, Moshe (1988). "Generalized multiple stochastic integrals and the representation of Wiener functionals". Stochastics. 23 (3): 311–330. doi:10.1080/17442508808833496.
  9. ^ Nualart, David; Zakai, Moshe (1989). "The partial Malliavin calculus". Séminaire de Probabilités XXIII. Lecture Notes in Mathematics. Vol. 1372. pp. 362–381. doi:10.1007/BFb0083986. ISBN 978-3-540-51191-5.
  10. ^ Üstünel, Ali Süleyman; Zakai, Moshe (1989). "On Independence and Conditioning On Wiener Space". Annals of Probability. 17 (4): 1441–1453. doi:10.1214/aop/1176991164.
  11. ^ Üstünel, Ali Süleyman; Zakai, Moshe (1993). "Applications of the degree theorem to absolute continuity on Wiener space". Probability Theory and Related Fields. 95 (4): 509–520. doi:10.1007/BF01196731.
  12. ^ Üstünel, Ali Süleyman; Zakai, Moshe (1997). "The Construction of Filtrations on Abstract Wiener Space". Journal of Functional Analysis. 143 (1): 10–32. doi:10.1006/jfan.1996.2973.
  13. ^ Üstünel, Ali Süleyman (2000). Transformation of Measure on Wiener Space. Springer. p. 320. ISBN 978-3-540-66455-0.
  14. ^ Üstünel, Ali Süleyman; Zakai, Moshe (1995). "Random rotations of the Wiener path". Probability Theory and Related Fields. 103 (3): 409–429. doi:10.1007/BF01195481. ISSN 0178-8051.
  15. ^ Moshe, Zakai (2005). "Rotations and Tangent Processes on Wiener Space". In Émery, Michel (ed.). Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics. Vol. 1857. Springer Berlin / Heidelberg. pp. 165–186. arXiv:math/0301351. doi:10.1007/978-3-540-31449-3_15. ISBN 978-3-540-23973-4.
  16. ^ Zakai, Moshe (September 2005). "On mutual information, likelihood ratios, and estimation error for the additive Gaussian channel". IEEE Transactions on Information Theory. 51 (9): 3017–3024. arXiv:math/0409548. doi:10.1109/TIT.2005.853297. ISSN 0018-9448.

Read other articles:

Waktu di Rusia   KALT Waktu Kaliningrad UTC+2 (MSK−1)   MSK Waktu Moskwa UTC+3 (MSK±0)   SAMT Waktu Samara UTC+4 (MSK+1)   YEKT Waktu Yekaterinburg UTC+5 (MSK+2)   OMST Waktu Omsk UTC+6 (MSK+3)   KRAT Waktu Krasnoyarsk UTC+7 (MSK+4)   IRKT Waktu Irkutsk UTC+8 (MSK+5)   YAKT Waktu Yakutsk UTC+9 (MSK+6)   VLAT Waktu Vladivostok UTC+10 (MSK+7)   MAGT Waktu Magadan UTC+11 (MSK+8)   PETT Waktu Kamchatka UTC+12 (MSK+9) Waktu Yekaterinbu...

 

Bura di Kuala Parek, Aceh Timur, Aceh. Bura Kuron di barat Lituania dan Rusia (Kaliningrad) memisahkan lagunanya dan Laut Baltik. Bura (bahasa Inggris: spit, barrier spit) adalah jenis bentuk lahan asal proses marin yang umumnya berbentuk tipis memanjang dari suatu daratan utama ke arah suatu perairan. Serupa dengan gisik penghalang lainnya, bura utamanya terbentuk akibat deposisi oleh ingsutan arus susur pantai yang ada di tubuh air tempat bura tersebut berada. Panjang dan bentuk bura dapat ...

 

Das Sitzungsgebäude im Justizzentrum Meiningen. Hier ist auch das Amtsgericht untergebracht. Das Amtsgericht Meiningen ist ein Gericht der ordentlichen Gerichtsbarkeit und das größte der sechs Amtsgerichte im Gerichtsbezirk des Landgerichts Meiningen und eines von 23 Amtsgerichten in Thüringen. Inhaltsverzeichnis 1 Gerichtssitz und -bezirk 2 Gebäude und Personal 3 Übergeordnete Gerichte 4 Geschichte 5 Siehe auch 6 Weblinks 7 Quellen Gerichtssitz und -bezirk Das Gericht hat seinen Sitz i...

قرار مجلس الأمن 607 إسرائيل والأراضي المحتلةإسرائيل والأراضي المحتلة التاريخ 5 يناير 1988 اجتماع رقم 278 الرمز S/RES/607  (الوثيقة) الموضوع الأراضي المحتلة من قبل إسرائيل ملخص التصويت 15 مصوت لصالحلا أحد مصوت ضدلا أحد ممتنع النتيجة اعتمد تكوين مجلس الأمن الأعضاء الدائمون  الص

 

Cet article est une ébauche concernant l’Ukraine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Cet article concerne la subdivision de la ville de Kiev. Pour la subdivision de l'oblast de Dnipropetrovsk, voir Raïon de Dnipro. Raïon de Dnipro (uk) Дніпровський район Vue sur la Dniepr en 1996. Héraldique Drapeau Administration Pays Ukraine Ville Kiev Code postal (en) 02### Indicati...

 

Rembrandt, Timotius dan Neneknya, 1648. Menurut Perjanjian Baru, Lois adalah nenek dari Timotius. Menurut tradisi luar Alkitab, ia lahir dalam iman Yahudi dan kemudian masuk agama Kristen bersama dengan putrinya Eunike. Satu-satunya penyebutannya dalam Alkitab adalah dalam 2 Timotius 1:5, dimana penulis berkata kepada Timotius, Sebab aku teringat akan imanmu yang tulus ikhlas, yaitu iman yang pertama-tama hidup di dalam nenekmu Lois dan di dalam ibumu Eunike dan yang aku yakin hidup juga di d...

1991 single by Hiroko MoriguchiEternal Wind ~Hohoemi wa Hikaru Kaze no Naka~Single by Hiroko Moriguchifrom the album Eternal Songs LanguageJapaneseEnglish titleEternal Wind ~Smile in the Shining Wind~B-sideKimi wo Mitsumete -The Time I'm Seeing You-ReleasedFebruary 5, 1991 (1991-02-05)Recorded1990GenreJ-popanisonLength4:43LabelStarchildSongwriter(s)Yui NishiwakiYoko OriharaHiroko Moriguchi singles chronology Koi wa Tahiti de Are-Are-A! (1990) Eternal Wind ~Hohoemi wa Hikaru Kaz...

 

1994 Italian-language novel by Eco The Island of the Day Before First edition (Italian)AuthorUmberto EcoOriginal titleL’isola del giorno primaTranslatorWilliam WeaverCountryItalyLanguageItalianPublisherBompiani (orig.)Secker & Warburg (UK)Harcourt (US)Publication date1994Published in English1995Media typePrint (Hardback & Paperback)Pages513ISBN0-436-20270-0 (UK)0151001510 (US)OCLC33328715 The Island of the Day Before (Italian: L'isola del giorno prima) is a 1994 histo...

 

Israeli rabbi and activist (born 1961) Rabbi Dr.Benyamin LauPersonalBornBinyamin Tzvi LauTel Aviv, IsraelReligionJudaismNationalityIsraeliOccupationRabbi, community leaderPositionRosh YeshivaYeshivaBeit Midrash for Social Justice at Beit MorashaPositionDirectorOrganisationCenter for Judaism and Society at Beit MorashaResidenceJerusalem, Israel Binyamin Tzvi (Benny) Lau, (born October 20, 1961, Tel Aviv) is an Israeli rabbi, community leader, activist, author, and public speaker who lives in J...

President of Iraq from 1968 to 1979 MarshalAhmed Hassan al-Bakrأحمد حسن البكرOfficial Portrait of Ahmed Hassan al-Bakr c. 19744th President of IraqIn office17 July 1968 – 16 July 1979Prime MinisterAbd ar-Razzaq an-NaifHimselfVice PresidentSaddam HusseinPreceded byAbdul Rahman ArifSucceeded bySaddam HusseinPrime Minister of IraqIn office31 July 1968 – 16 July 1979PresidentHimselfPreceded byAbd ar-Razzaq an-NaifSucceeded bySaddam HusseinIn office8 Februar...

 

Indian businesswoman (1936–2021) Indu JainBorn(1936-09-08)8 September 1936Ayodhya, United Provinces, British IndiaDied13 May 2021(2021-05-13) (aged 84)New Delhi, Delhi, IndiaNationalityIndianOccupation(s)Chairman and CEO of Bennett Coleman & Co Ltd.Known forThe Times FoundationThe Oneness ForumSpouseAshok Kumar JainChildrenSamir Jain, Vineet Jain Indu Jain (8 September 1936 – 13 May 2021) was an Indian media executive and philanthropist. She belonged to the Sahu Jain family ...

 

Cette page contient des caractères spéciaux ou non latins. Si certains caractères de cet article s’affichent mal (carrés vides, points d’interrogation, etc.), consultez la page d’aide Unicode. Consonne fricative palatale sourde Symbole API ç Numéro API 138 Unicode U+00E7 X-SAMPA C Kirshenbaum C modifier  ç La consonne fricative palatale sourde est un son consonantique assez peu fréquent dans les langues parlées. Le symbole dans l’alphabet phonétique international e...

Indian multinational conglomerate company Amara Raja GroupTypePrivateIndustryConglomerateFounded1985; 38 years ago (1985)FounderRamachandra Naidu GallaHeadquartersTirupati, Andhra Pradesh, IndiaArea servedWorldwideKey people Ramachandra Naidu Galla(Founder Chairman) Galla Jayadev (Co-Founder, Chairman & Managing Director) ProductsAutomotive batteryBattery chargersElectronicsIndustrial batteriesDigital invertersInfrastructurePowerProcessed foodTrickle chargersUPSRevenue ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Addicted web series – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) 2016 Chinese television series AddictedAlso known asHeroin Simplified Chinese上瘾Hanyu PinyinShàngyǐn GenreBLBased onA...

 

Indian TV series or program No. 1 YaariShow posterGenreTalk showDirected bySanjeev KumarCreative directorSanjeev k kumarPresented byRana Daggubati (Telugu)Country of originIndiaOriginal languagesTeluguMarathiKannadaHindiNo. of seasons3 (Telugu)No. of episodes38 (Telugu)ProductionProduction locationsHyderabad, IndiaCamera setupMulti-cameraOriginal releaseNetworkAha[1]Viu AppStar BharatGemini TV No. 1 Yaari (transl. No.1 friendship) is an Indian web series and Television Talk show ...

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Schloss Philippsruhe Das Historische Museum in Hanau ist das größte Museum der „Museen der Stadt Hanau“. Inhaltsverzeichnis 1 Bestände 2 Geschichte 3 Ausstellungsräume 4 Exponate 4.1 Untere Etage 4.2 Beletage 5...

 

Music in the public domain or under a free license For other uses, see Free improvisation. The crossed out copyright symbol with a musical note on the right hand side is the free music symbol, signifying a lack of copyright restrictions on music. It may be used in the abstract, or applied to a sound recording or musical composition. Free music or libre music is music that, like free software, can freely be copied, distributed and modified for any purpose. Thus free music is either in the publ...

 

It has been suggested that this article should be split into multiple articles. (discuss) (October 2023)Part of the rapid transit system in the Greater Tokyo area of Japan Tokyo subway Logos of the Tokyo Metro (left) and Toei Subway (right)Toei 6300 series (left) and Tokyo Metro 9000 series (right) trains at Tamagawa StationOverviewLocaleTokyo, JapanTransit typeRapid transitNumber of lines13Number of stations285Daily ridership Tokyo Metro: 5.95 million (2022)[1] Toei Subway: 2.00...

Dutch tennis player (1964–1999) Menno OostingCountry (sports) NetherlandsBorn(1964-05-17)17 May 1964Son en Breugel, NetherlandsDied22 February 1999(1999-02-22) (aged 34)Turnhout, BelgiumHeight1.80 m (5 ft 11 in)Turned pro1983PlaysLeft-handedPrize money$1,041,725SinglesCareer record26–36Career titles0Highest rankingNo. 72 (4 July 1988)Grand Slam singles resultsAustralian Open4R (1988)French Open1R (1986, 1988)Wimbledon3R (1988)US ...

 

هيرونيموس بوك (بالألمانية: Hieronymus Bock)‏  معلومات شخصية الميلاد سنة 1498[1] الوفاة 3 مارس 1554 (55–56 سنة)هورنباخ  الحياة العملية اختصار اسم علماء النبات H.Bock  المدرسة الأم جامعة هايدلبرغ  المهنة عالم نبات،  وكاهن،  وعالم حشرات،  وطبيب  اللغات اللاتينية،...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!