Morison equation

Flow forces according to the Morison equation for a body placed in a harmonic flow, as a function of time. Blue line: drag force; red line: inertia force; black line: total force according to the Morison equation. Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time.

In fluid dynamics the Morison equation is a semi-empirical equation for the inline force on a body in oscillatory flow. It is sometimes called the MOJS equation after all four authors—Morison, O'Brien, Johnson and Schaaf—of the 1950 paper in which the equation was introduced.[1] The Morison equation is used to estimate the wave loads in the design of oil platforms and other offshore structures.[2][3]

Description

Wave loading on the steel jacket structure of a Production Utilities Quarters Compression (PUQC) platform in the Rong Doi oil field, offshore Vietnam (see Oil megaprojects (2010)).

The Morison equation is the sum of two force components: an inertia force in phase with the local flow acceleration and a drag force proportional to the (signed) square of the instantaneous flow velocity. The inertia force is of the functional form as found in potential flow theory, while the drag force has the form as found for a body placed in a steady flow. In the heuristic approach of Morison, O'Brien, Johnson and Schaaf these two force components, inertia and drag, are simply added to describe the inline force in an oscillatory flow. The transverse force—perpendicular to the flow direction, due to vortex shedding—has to be addressed separately.

The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number, Reynolds number and surface roughness.[4][5]

The descriptions given below of the Morison equation are for uni-directional onflow conditions as well as body motion.

Fixed body in an oscillatory flow

In an oscillatory flow with flow velocity , the Morison equation gives the inline force parallel to the flow direction:[6]

where

  • is the total inline force on the object,
  • is the flow acceleration, i.e. the time derivative of the flow velocity
  • the inertia force , is the sum of the Froude–Krylov force and the hydrodynamic mass force
  • the drag force according to the drag equation,
  • is the inertia coefficient, and the added mass coefficient,
  • A is a reference area, e.g. the cross-sectional area of the body perpendicular to the flow direction,
  • V is volume of the body.

For instance for a circular cylinder of diameter D in oscillatory flow, the reference area per unit cylinder length is and the cylinder volume per unit cylinder length is . As a result, is the total force per unit cylinder length:

Besides the inline force, there are also oscillatory lift forces perpendicular to the flow direction, due to vortex shedding. These are not covered by the Morison equation, which is only for the inline forces.

Moving body in an oscillatory flow

In case the body moves as well, with velocity , the Morison equation becomes:[6]

where the total force contributions are:

  • a: Froude–Krylov force, due to the pressure gradient at the body's location induced by the fluid acceleration ,
  • b: hydrodynamic mass force,
  • c: drag force.

Note that the added mass coefficient is related to the inertia coefficient as .

Limitations

  • The Morison equation is a heuristic formulation of the force fluctuations in an oscillatory flow. The first assumption is that the flow acceleration is more-or-less uniform at the location of the body. For instance, for a vertical cylinder in surface gravity waves this requires that the diameter of the cylinder is much smaller than the wavelength. If the diameter of the body is not small compared to the wavelength, diffraction effects have to be taken into account.[7]
  • Second, it is assumed that the asymptotic forms: the inertia and drag force contributions, valid for very small and very large Keulegan–Carpenter numbers respectively, can just be added to describe the force fluctuations at intermediate Keulegan–Carpenter numbers. However, from experiments it is found that in this intermediate regime—where both drag and inertia are giving significant contributions—the Morison equation is not capable of describing the force history very well. Although the inertia and drag coefficients can be tuned to give the correct extreme values of the force.[8]
  • Third, when extended to orbital flow which is a case of non uni-directional flow, for instance encountered by a horizontal cylinder under waves, the Morison equation does not give a good representation of the forces as a function of time.[9]

References

  1. ^ Sarpkaya, T. (1986), "Force on a circular cylinder in viscous oscillatory flow at low Keulegan–Carpenter numbers" (PDF), Journal of Fluid Mechanics, 165: 61–71, Bibcode:1986JFM...165...61S, doi:10.1017/S0022112086002999 (inactive 29 November 2024), hdl:10945/62176, S2CID 122046406{{citation}}: CS1 maint: DOI inactive as of November 2024 (link)
  2. ^ Gudmestad, Ove T.; Moe, Geir (1996), "Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures", Marine Structures, 9 (8): 745–758, Bibcode:1996MaStr...9..745G, doi:10.1016/0951-8339(95)00023-2
  3. ^ "Guidelines on design and operation of wave energy converters" (PDF). Det Norske Veritas. May 2005. Archived from the original (PDF) on 2009-02-24. Retrieved 2009-02-16.
  4. ^ Sarpkaya, T. (1976), "Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders", Proceedings of the International Conference on the Behavior of Offshore Structures, BOSS '76, vol. 1, pp. 220–235
  5. ^ Sarpkaya, T. (1977), Vortex shedding and resistance in harmonic flow about smooth and rough cylinders at high Reynolds numbers, Monterey: Naval Postgraduate School, Report No. NPS-59SL76021
  6. ^ a b Sumer & Fredsøe (2006), p. 131.
  7. ^ Patel, M.H.; Witz, J.A. (2013), Compliant Offshore Structures, Elsevier, pp. 80–83, ISBN 9781483163321
  8. ^ Sarpkaya (2010, pp. 95–98)
  9. ^ Chaplin, J. R. (1984), "Nonlinear forces on a horizontal cylinder beneath waves", Journal of Fluid Mechanics, 147: 449–464, Bibcode:1984JFM...147..449C, doi:10.1017/S0022112084002160 (inactive 29 November 2024), S2CID 122421362{{citation}}: CS1 maint: DOI inactive as of November 2024 (link)

Further reading

  • Morison, J. R.; O'Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), "The force exerted by surface waves on piles", Petroleum Transactions, 189 (5), American Institute of Mining Engineers: 149–154, doi:10.2118/950149-G
  • Sarpkaya, T. (2010), Wave Forces on Offshore Structures, Cambridge University Press, ISBN 9780521896252
  • Sarpkaya, T.; Isaacson, M. (1981), Mechanics of wave forces on offshore structures, New York: Van Nostrand Reinhold, ISBN 0-442-25402-4
  • Sumer, B. M.; Fredsøe, J. (2006), Hydrodynamics around cylindrical structures, Advanced Series on Ocean Engineering, vol. 26 (revised ed.), World Scientific, ISBN 981-270-039-0, 530 pages

Read other articles:

Ildebrando D'Arcangelo Información personalNacimiento 14 de diciembre de 1969 Pescara Pescara (Italia) Nacionalidad ItalianaInformación profesionalOcupación CantanteGéneros Ópera, recitalInstrumento VozTipo de voz Bajo BarítonoDiscográfica Deutsche Grammophon[editar datos en Wikidata] Ildebrando D'Arcangelo (nacido el 14 de diciembre de 1969) es un cantante de ópera italiano con voz de bajo-barítono.[1]​ Carrera Nacido en Pescara, Abruzzo, D'Arcangelo comenzó sus est...

 

Junior Eurovisiesongfestival 2008 Fun in the sun Gastland  Cyprus Locatie Spyros Kyprianou Athletic Center, Limasol Omroep CyBC Datum 22 november 2008 Presentatoren Alex Michael en Sophia Paraskeva Winnaar Land  Georgië Lied Bzzz Andere gegevens Stemgegevens Elk land verdeelt 1, 2, 3, 4, 5, 6, 7, 8, 10 en 12 punten, 50 % via televoting, 50 % via een vakjury Aantal landen 15 Terugtrekkend  Portugal Zweden Intervalact Dima Bilan, Evdokia Kadi en alle deelnemers me...

 

Esta página ou seção está redigida sob uma perspectiva principalmente brasileira e pode não representar uma visão mundial do assunto. Por favor aperfeiçoe este artigo ou discuta este caso na página de discussão. As relações étnico-raciais se referem às questões concernentes à população afro-brasileira,[1] a fim de sair do impasse e da postura dicotômica entre os conceitos raça e etnia. Para se compreender a realidade do negro brasileiro, não somente as características fí...

Perang FalklandBagian dari Perang DinginHMS Conqueror pulang setelah berjaya.Tanggal2 April – 14 Juni 1982LokasiKepulauan Falkland, Pulau Georgia Selatan dan Kepulauan Sandwich SelatanHasil Kemenangan Britania RayaPihak terlibat  Britania Raya Kepulauan Falkland  ArgentinaTokoh dan pemimpin Margaret ThatcherTerence LewinHenry LeachJohn FieldhouseSandy WoodwardJeremy MooreMichael ClappJulian ThompsonTony Wilson Leopoldo GaltieriJorge AnayaBasilio Lami DozoJuan LombardoErnesto ...

 

Military conflict in 18th century India The Nizam's Carnatic campaigns (1725–27) were a series of military campaigns of the Nizam of Hyderabad against the Maratha Empire and the Thanjavur Maratha Kingdom. These campaigns were sparked by the Maratha's attempts to collect taxes from the Nizam's dominions in Carnatic, leading to a conflict over control and revenue. Nizam's Carnatic campaigns (1725-27)Part of Maratha-Nizam conflictsCarnatic regionDate1725-1727LocationCarnatic regionResult Nizam...

 

Kwame Anthony Appiah Kwame Anthony Akroma-Ampim Kusi Appiah (* 8. Mai 1954 in London) ist ein analytischer Philosoph, der unter anderem zu Fragen der Semantik, Ethik, Politik sowie interkulturellen Philosophie arbeitet und neben umfangreicher Herausgebertätigkeit Romane schreibt. Er ist Professor an der New York University. Inhaltsverzeichnis 1 Leben 2 Werke (Auswahl) 3 Weblinks 4 Einzelnachweise Leben Appiah wurde in London als Sohn des bekannten ghanaischen Politikers und Juristen Joe Appi...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Logo Zeal Zeal dahulu merupakan sebuah direktori web, pertama muncul pada tahun 1999, dan kemudian diakuisisi oleh Looksmart pada Oktober 2000 dengan harga sebesar $ 20 juta. Zeal mengolah konten direktorinya dengan editor, editor dari Zeal terdiri dar...

 

Der Warning Track (dt: Warnstreifen) ist der umlaufende Randstreifen eines Baseballfeldes zwischen dem Rasenfeld und der Wand bzw. dem Zaun der Spielfeldbegrenzung. Er dient dazu, dass ein Outfielder, der in Richtung Zaun läuft und dabei auf den von hinten anfliegenden Ball schaut, nicht ohne Vorwarnung gegen den Zaun prallt. Nicht jedes Baseballfeld hat einen solchen Streifen. In den meisten Profiligen gehört er jedoch zu den Platzbauauflagen, aber auch für internationale Wettkämpfe (Eur...

 

LahamKecamatanNegara IndonesiaProvinsiKalimantan TimurKabupatenMahakam UluPemerintahan • CamatUbang NyauPopulasi • Total2,280 jiwa (2.010) jiwaKode Kemendagri64.11.03 Kode BPS6411010 Desa/kelurahan5/- Gereja yang dibangun oleh ordo Misionaris Keluarga Kudus (MSF) di Laham. Laham adalah sebuah kecamatan di Kabupaten Mahakam Ulu, Provinsi Kalimantan Timur, Indonesia. Batas wilayah Kecamatan Laham berbatasan dengan: Utara Kecamatan Long Bagun Timur Kecamatan Long Hub...

Sekolah Tinggi Ilmu Ekonomi Wijaya MulyaNama lainSTIE Wijaya MulyaMotoWe Create A Better FutureJenisPerguruan Tinggi SwastaDidirikan30 Maret 1969AlamatJl. Kutai Raya, Sumber Jetis, Sumber, Banjarsari, Surakarta, Jawa Tengah, 57138, IndonesiaBahasaBahasa IndonesiaSitus webstiewijayamulya.ac.id Sekolah Tinggi Ilmu Ekonomi Wijaya Mulya (disingkat STIE Wijaya Mulya) adalah salah satu perguruan tinggi swasta di Indonesia yang berlokasi di Kota Surakarta, Jawa Tengah. Sejarah Sekolah Tinggi Ilmu Ek...

 

Das Kruckenkreuz war Symbol der austrofaschistischen Vaterländischen Front und des von ihr regierten Ständestaates Der Begriff Austrofaschismus ist eine der Fremdbezeichnungen für das von 1933/34 bis 1938 in Österreich etablierte autoritäre, an ständestaatlichen und faschistischen Ideen orientierte Herrschaftssystem mit starken Anlehnungen an die Diktatur Benito Mussolinis in Italien. Die Selbstbezeichnung war Ständestaat. Unter Historikern ist der Begriff Austrofaschismus umstritten.&...

 

Zydrunas IlgauskasIlgauskas tampil untuk Cavaliers pada tahun 2009Informasi pribadiLahir5 Juni 1975 (umur 48)Kaunas, Uni SovietKebangsaanLituania / Amerika SerikatTinggi7 ft 3 in (2,21 m)Berat260 pon (118 kg)Informasi karierDraf NBA1996 / Babak: 1 / Urutan pemilihan: ke-20 secara keseluruhanDipilih oleh Cleveland CavaliersKarier bermain1993–2011PosisiCenterNomor11Riwayat karier1993–1996Atletas Kaunas1996–2010Cleveland Cavaliers2010–2011Miami Heat Prestasi...

السفارة السعودية في الكاميرون السعودية الكاميرون الإحداثيات 3°53′56″N 11°30′40″E / 3.8988°N 11.5111°E / 3.8988; 11.5111  البلد الكاميرون  المكان ياوندي العنوان شارع روزا بارك انتوقو - حي القولف - ياوندي الكاميرون السفير د. فيصل بن سعود بن مجفل الموقع الالكتروني سفارة المملك...

 

U.S. State Department division Bureau of European and Eurasian AffairsSeal of the United States Department of StateBureau overviewFormed1983; 40 years ago (1983)Preceding bureauBureau of European AffairsJurisdictionExecutive branch of the United StatesHeadquartersHarry S. Truman Building, Washington, D.C., United StatesEmployees11,906 (as of 2011)[1]Annual budget$604 million (FY 2010)[1]Bureau executiveJames C. O'Brien, Assistant Secretary of State for Europe...

 

This article is part of a series on thePolitics of Switzerland Constitution Human rights Federal Council Members (by seniority) Alain Berset (President) Guy Parmelin Ignazio Cassis Viola Amherd (Vice President) Karin Keller-Sutter Albert Rösti Élisabeth Baume-Schneider Federal Chancellor Walter Thurnherr Federal administration Federal Assembly Council of States (members) National Council (members) Political parties Elections Voting Elections 1848 1851 1854 1857 1860 1863 1866 1869 1872 1875...

Municipality in Aragon, SpainAlmunientemunicipality FlagSealCountrySpainAutonomous communityAragonProvinceHuescaMunicipalityAlmunienteArea • Total37 km2 (14 sq mi)Population (2018)[1] • Total471 • Density13/km2 (33/sq mi)Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Almuniente is a municipality located in the province of Huesca, Aragon, Spain. According to the 2004 census (INE), the municipality has a populatio...

 

Music and musical traditions of Brazil This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Music of Brazil – news · newspapers · books · scholar · JSTOR (Octob...

 

Pin that holds connecting rod to piston head Gudgeon pin connection at connecting rod. Gudgeon pin fits into gudgeons inside piston. In internal combustion engines, the gudgeon pin (UK, wrist pin or piston pin US) connects the piston to the connecting rod, and provides a bearing for the connecting rod to pivot upon as the piston moves.[1] In very early engine designs, including those driven by steam, and many very large stationary or marine engines, the gudgeon pin is located in a sli...

Lolworth Cove is on the Jurassic Coast This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lulworth Cove – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this template message) Lulworth CoveLulworth Cove from the northLulworth CoveLocationDorset, EnglandCoordinates50°...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Morgan 2012 film – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this template message) 2012 American filmMorganTheatrical release posterDirected byMichael D. AkersWritten byMichael D. Akers Sandon BergProduced byM...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!