Montgomery's pair correlation conjecture

Hugh Montgomery at Oberwolfach in 2008

In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery (1973) that the pair correlation between pairs of zeros of the Riemann zeta function (normalized to have unit average spacing) is

which, as Freeman Dyson pointed out to him, is the same as the pair correlation function of random Hermitian matrices.

Conjecture

Under the assumption that the Riemann hypothesis is true.

Let be fixed, then the conjecture states

and where each is the imaginary part of the non-trivial zeros of Riemann zeta function, that is .

Explanation

Informally, this means that the chance of finding a zero in a very short interval of length 2πL/log(T) at a distance 2πu/log(T) from a zero 1/2+iT is about L times the expression above. (The factor 2π/log(T) is a normalization factor that can be thought of informally as the average spacing between zeros with imaginary part about T.) Andrew Odlyzko (1987) showed that the conjecture was supported by large-scale computer calculations of the zeros. The conjecture has been extended to correlations of more than two zeros, and also to zeta functions of automorphic representations (Rudnick & Sarnak 1996). In 1982 a student of Montgomery's, Ali Erhan Özlük, proved the pair correlation conjecture for some of Dirichlet's L-functions.A.E. Ozluk (1982)

The connection with random unitary matrices could lead to a proof of the Riemann hypothesis (RH). The Hilbert–Pólya conjecture asserts that the zeros of the Riemann Zeta function correspond to the eigenvalues of a linear operator, and implies RH. Some people think this is a promising approach (Andrew Odlyzko (1987)).

Montgomery was studying the Fourier transform F(x) of the pair correlation function, and showed (assuming the Riemann hypothesis) that it was equal to |x| for |x| < 1. His methods were unable to determine it for |x| ≥ 1, but he conjectured that it was equal to 1 for these x, which implies that the pair correlation function is as above. He was also motivated by the notion that the Riemann hypothesis is not a brick wall, and one should feel free to make stronger conjectures.

F(α) conjecture or strong pair correlation conjecture

Let again and stand for non-trivial zeros of the Riemann zeta function. Montgomery introduced the function

for and some weight function .

Montgomery and Goldston[1] proved under the Riemann hypothesis, that for this function converges uniformly

Montgomery conjectured, which is now known as the F(α) conjecture or strong pair correlation conjecture, that for we have uniform convergence[2]

for in a bounded interval.

Numerical calculation by Odlyzko

The real line describes the two-point correlation function of the random matrix of type GUE. Blue dots describe the normalized spacings of the non-trivial zeros of Riemann zeta function, the first 105 zeros.

In the 1980s, motivated by Montgomery's conjecture, Odlyzko began an intensive numerical study of the statistics of the zeros of ζ(s). He confirmed the distribution of the spacings between non-trivial zeros using detailed numerical calculations and demonstrated that Montgomery's conjecture would be true and that the distribution would agree with the distribution of spacings of GUE random matrix eigenvalues using Cray X-MP. In 1987 he reported the calculations in the paper Andrew Odlyzko (1987).

For non-trivial zero, 1/2 + iγn, let the normalized spacings be

Then we would expect the following formula as the limit for :

Based on a new algorithm developed by Odlyzko and Arnold Schönhage that allowed them to compute a value of ζ(1/2 + it) in an average time of tε steps, Odlyzko computed millions of zeros at heights around 1020 and gave some evidence for the GUE conjecture.[3][4]

The figure contains the first 105 non-trivial zeros of the Riemann zeta function. As more zeros are sampled, the more closely their distribution approximates the shape of the GUE random matrix.

See also

References

  1. ^ Goldston, D. A.; Montgomery, H. L. (1987). "Pair correlation of zeros and primes in short intervals". In Adolphson, A.C.; Conrey, J.B.; Ghosh, A.; Yager, R.I. (eds.). Analytic number theory and Diophantine problems. Progress in Mathematics. Vol. 70. Birkhäuser Boston. pp. 183–203. doi:10.1007/978-1-4612-4816-3_10. ISBN 978-1-4612-9173-2.
  2. ^ Carneiro, Emanuel; Chandee, Vorrapan; Chirre, Andrés; Milinovich, Micah B. (February 2022). "On Montgomery's pair correlation conjecture: A tale of three integrals". Journal für die reine und angewandte Mathematik (Crelle's Journal) (786). Walter de Gruyter (GmbH): 205–243. arXiv:2108.09258. doi:10.1515/crelle-2021-0084.
  3. ^ A. M. Odlyzko, "The 1020-th zero of the Riemann zeta function and 70 million of its neighbors," AT&T Bell Lab. preprint (1989)
  4. ^ M. Mehta (1990), chap.1

Read other articles:

أيغيزارد Այգեզարդ   سميت باسم أنستاس ميكويان  تاريخ التأسيس 1831  تقسيم إداري البلد  أرمينيا[1] المقاطعة أرارات خصائص جغرافية إحداثيات 39°57′23″N 44°36′17″E / 39.956388888889°N 44.604722222222°E / 39.956388888889; 44.604722222222  المساحة 8.64 كيلومتر مربع  الارتفاع 871 متر  السكا

 

Distrik Podunavlje Podunavski okrugDistrikLokasi di SerbiaNegara SerbiaRegionSerbia Selatan dan TimurIbu kotaSmederevoLuas • Total1.248 km2 (482 sq mi)Populasi (2011) • Total198.184 • Kepadatan160/km2 (410/sq mi)Kode ISO 3166-2RS-10 Distrik Podunavlje adalah salah satu dari 29 distrik di Serbia. Menurut sensus 2011, Podunavlje memiliki luas 1.248 kilometer persegi dan populasi 198.184 jiwa. Kode ISO 3166-2 daerah ini adalah RS-...

 

Kota Metropolitan Ibu kota Roma Kota Metropolitan Ibu Kota Roma (bahasa Italia: Città metropolitana di Roma Capitale) merupakan sebuah wilayah pemerintah lokal setingkat kota metropolitan di region Lazio, Republik Italia. Kota ini terdiri dari wilayah kota Roma dan 121 munisipalitas lain (comuni) di pedalaman kota. Dengan lebih dari 4,3 juta penduduk, kota ini adalah kota metropolitan terbesar di Italia. Referensi Pranala luar https://facebook.com/CittametropolitanaRomaCapitale Wikimedia...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2022) اديسون الفيس دي اولفيرا   معلومات شخصية الميلاد 20 مارس 1981 (العمر 42 سنة)برازيليا  الطول 1.77 م (5 قدم 9 1⁄2 بوصة) مركز اللعب مهاجم الجنسية البراز...

 

Burgruine Scherenburg Ruine Scherenburg Ruine Scherenburg Alternativname(n) Schloss Scherenberg Staat Deutschland Ort Gemünden am Main Burgentyp Höhenburg, Hanglage Erhaltungszustand vor 1243 Ständische Stellung Grafen Geographische Lage 50° 3′ N, 9° 41′ O50.0566529.691626200Koordinaten: 50° 3′ 23,9″ N, 9° 41′ 29,9″ O Höhenlage 200 m ü. NN Burgruine Scherenburg (Bayern) Die Burgruine Scherenburg, auch S...

 

Amphibious assault ship that can carry helicopters USS Tarawa (LHA-1) underway in June 1997 An aerial view of USS America (LHA-6) coming into port in San Diego, California, 15 September 2014 Landing helicopter assault (LHA) is the United States Navy's hull classification symbol for the general-purpose helicopter-carrying amphibious assault ships of the Tarawa and America classes. Their purpose is to project power and maintain presence by serving as the cornerstone of the amphibious ...

Neighborhood of Philadelphia in Pennsylvania, United StatesCallowhillNeighborhood of PhiladelphiaView of Callowhill from ChinatownCallowhillCoordinates: 39°57′36″N 75°09′29″W / 39.96°N 75.158°W / 39.96; -75.158Country United StatesStatePennsylvaniaCountyPhiladelphiaCityPhiladelphiaArea code(s)215, 267, and 445 Callowhill is one of the unofficial names for a neighborhood in Philadelphia, Pennsylvania, United States, located roughly in the vicinity of Ca...

 

Railway station in Minamiuonuma, Niigata Prefecture, Japan Muikamachi Station六日町駅Muikamachi StationGeneral informationLocation140-2 Muikamachi, Minamiuonuma-shi, Niigata-ken 949-6680JapanCoordinates37°04′00″N 138°52′33″E / 37.0668°N 138.8758°E / 37.0668; 138.8758Operated by JR East Hokuetsu Express Line(s) ■Jōetsu Line ■ Hokuhoku Line Platforms1 side + 2 island platformsOther informationStatusStaffed (Midori no Madoguchi)WebsiteOfficial website...

 

Evang. Mörike-Gymnasium und -Realschule Schulform Gymnasium und Realschule Gründung 1836 Adresse Arminstraße 30 70178 Stuttgart Land Baden-Württemberg Staat Deutschland Koordinaten 48° 45′ 53″ N, 9° 9′ 55″ O48.7647222222229.1652777777778Koordinaten: 48° 45′ 53″ N, 9° 9′ 55″ O Träger Evangelische Schulstiftung Stuttgart Schüler 829 Lehrkräfte 94 Leitung Daniel Steiner (Gymnasium und Schulverbund)Milena ...

Coach of Romanian national artistic gymnastics team Mariana Bitang (born August 3, 1962, in Râmnicu Sărat) is a coach for the Romanian national women's artistic gymnastics team. Along with her partner, Octavian Bellu, she helped Romania win five consecutive team gold medals at the World Championships from 1994 to 2001 and team gold medals at the 2000 and 2004 Summer Olympics.[1] In 2005, Bitang retired from coaching and became an adviser to Romanian President Traian Băsescu.[2&...

 

Trafficator in the on position Trafficator in the on position Austin A30 with trafficator deployed Trafficators are semaphore signals which, when operated, protrude from the bodywork of a motor vehicle to indicate its intention to turn in the direction indicated by the pointing signal. Trafficators are often located at the door pillar. History They first appeared in the 1900s, when they were actuated either mechanically or pneumatically. In 1908, Alfredo Barrachini in Rome added electric ligh...

 

Dutch politician (born 1971) Farid AzarkanAzarkan in 2017Leader of DENKIn office26 September 2020 – 3 August 2023Preceded byTunahan KuzuSucceeded byStephan van BaarleLeader of Denk in the House of RepresentativesIn office21 March 2020 – 3 August 2023Preceded byTunahan KuzuSucceeded byStephan van BaarleMember of the House of RepresentativesIn office23 March 2017 – 5 December 2023 Personal detailsBorn (1971-10-16) 16 October 1971 (age 52)Tafersit, MoroccoNa...

Alta Plaza ParkAlta Plaza park stairsTypeMunicipal parkLocationJackson & SteinerCoordinates37°47′28″N 122°26′16″W / 37.7911733°N 122.4376698°W / 37.7911733; -122.4376698[1]Area11.9 acres (4.8 ha)[1]Established1888 (1888)[1]Operated bySan Francisco Recreation & ParksOpen5am to Midnight[1] Alta Plaza Park is a public park in San Francisco, California and caps the top of the western edge of Pacific Heights...

 

Voce principale: Dragon Ball. I protagonisti della serie nella sigla di Dragon Ball Super Questa è la lista dei personaggi di Dragon Ball, manga scritto e illustrato da Akira Toriyama. Gli stessi compaiono anche nelle serie televisive anime, nei film e nei media derivati. La serie prende posto in un universo immaginario nel quale compare in due occasioni anche il cast di Dr. Slump, precedente opera di Toriyama. Indice 1 Creazione 2 Personaggi principali 2.1 Son Goku 2.2 Bulma 2.3 Maestro Mut...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Oedipus rex opera – news · newspapers · books · scholar · JSTOR (July 2008) (Learn how and when to remove this template message) Oedipus rex  by Igor StravinskyThe composerDescriptionOpera-oratorioLibrettistJean CocteauBased onSophocles's Oedipus RexP...

Car that has been recently designed or manufactured This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (February 2023) (Learn how and when to remove t...

 

Disambiguazione – Se stai cercando il giocatore di football americano, vedi Brandon Flowers (giocatore di football americano). Questa voce o sezione sull'argomento musicisti statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Brandon FlowersBrandon Flowers nel 2010 Nazionalità Stati Un...

 

River in Gansu and Shaanxi, China This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jing River – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) Jing RiverJing River in Jingyang County, close to where it flows into the Wei RiverPhysical character...

Italian diplomat (1928–2018) Michelangelo Pisani MassamormilePersonal detailsBorn (1933-03-24) 24 March 1933 (age 90)NapoliNationalityItalianOccupationDiplomat Michelangelo Pisani di Massa e di Mormile (24 March 1933), count of Massa Lubrense and Mormile, is an Italian diplomat. Biography He graduated in law in 1954 and entered the diplomatic career in 1960.[1] During his career, he was posted to the Permanent Representation of Italy to the United Nations in New York, at the Co...

 

Australian soccer player Blake Powell Powell training with Sydney FC in 2014Personal informationFull name Blake PowellDate of birth (1991-04-18) 18 April 1991 (age 32)Place of birth Sydney, AustraliaHeight 1.76 m (5 ft 9 in)Position(s) Striker / Attacking midfielder[1]Team informationCurrent team APIA LeichhardtNumber 10Youth career2010–2012 Sydney FCSenior career*Years Team Apps (Gls)2008–2010 Sutherland Sharks 27 (7)2011 Bonnyrigg White Eagles 14 (4)2012 Suth...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!