Minimal polynomial (linear algebra)

In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA.

The following three statements are equivalent:

  1. λ is a root of μA,
  2. λ is a root of the characteristic polynomial χA of A,
  3. λ is an eigenvalue of matrix A.

The multiplicity of a root λ of μA is the largest power m such that ker((AλIn)m) strictly contains ker((AλIn)m−1). In other words, increasing the exponent up to m will give ever larger kernels, but further increasing the exponent beyond m will just give the same kernel.

If the field F is not algebraically closed, then the minimal and characteristic polynomials need not factor according to their roots (in F) alone, in other words they may have irreducible polynomial factors of degree greater than 1. For irreducible polynomials P one has similar equivalences:

  1. P divides μA,
  2. P divides χA,
  3. the kernel of P(A) has dimension at least 1.
  4. the kernel of P(A) has dimension at least deg(P).

Like the characteristic polynomial, the minimal polynomial does not depend on the base field. In other words, considering the matrix as one with coefficients in a larger field does not change the minimal polynomial. The reason for this differs from the case with the characteristic polynomial (where it is immediate from the definition of determinants), namely by the fact that the minimal polynomial is determined by the relations of linear dependence between the powers of A: extending the base field will not introduce any new such relations (nor of course will it remove existing ones).

The minimal polynomial is often the same as the characteristic polynomial, but not always. For example, if A is a multiple aIn of the identity matrix, then its minimal polynomial is Xa since the kernel of aInA = 0 is already the entire space; on the other hand its characteristic polynomial is (Xa)n (the only eigenvalue is a, and the degree of the characteristic polynomial is always equal to the dimension of the space). The minimal polynomial always divides the characteristic polynomial, which is one way of formulating the Cayley–Hamilton theorem (for the case of matrices over a field).

Formal definition

Given an endomorphism T on a finite-dimensional vector space V over a field F, let IT be the set defined as

where F[t ] is the space of all polynomials over the field F. IT is a proper ideal of F[t ]. Since F is a field, F[t ] is a principal ideal domain, thus any ideal is generated by a single polynomial, which is unique up to a unit in F. A particular choice among the generators can be made, since precisely one of the generators is monic. The minimal polynomial is thus defined to be the monic polynomial that generates IT. It is the monic polynomial of least degree in IT.

Applications

An endomorphism φ of a finite-dimensional vector space over a field F is diagonalizable if and only if its minimal polynomial factors completely over F into distinct linear factors. The fact that there is only one factor Xλ for every eigenvalue λ means that the generalized eigenspace for λ is the same as the eigenspace for λ: every Jordan block has size 1. More generally, if φ satisfies a polynomial equation P(φ) = 0 where P factors into distinct linear factors over F, then it will be diagonalizable: its minimal polynomial is a divisor of P and therefore also factors into distinct linear factors. In particular one has:

  • P = X k − 1: finite order endomorphisms of complex vector spaces are diagonalizable. For the special case k = 2 of involutions, this is even true for endomorphisms of vector spaces over any field of characteristic other than 2, since X 2 − 1 = (X − 1)(X + 1) is a factorization into distinct factors over such a field. This is a part of representation theory of cyclic groups.
  • P = X 2X = X(X − 1): endomorphisms satisfying φ2 = φ are called projections, and are always diagonalizable (moreover their only eigenvalues are 0 and 1).
  • By contrast if μφ = X k with k ≥ 2 then φ (a nilpotent endomorphism) is not necessarily diagonalizable, since X k has a repeated root 0.

These cases can also be proved directly, but the minimal polynomial gives a unified perspective and proof.

Computation

For a nonzero vector v in V define:

This definition satisfies the properties of a proper ideal. Let μT,v be the monic polynomial which generates it.

Properties

  • Since IT,v contains the minimal polynomial μT, the latter is divisible by μT,v.
  • If d is the least natural number such that v, T(v), ..., Td(v) are linearly dependent, then there exist unique a0, a1, ..., ad−1 in F, not all zero, such that

    and for these coefficients one has

  • Let the subspace W be the image of μT,v(T ), which is T-stable. Since μT,v(T ) annihilates at least the vectors v, T(v), ..., Td−1(v), the codimension of W is at least d.
  • The minimal polynomial μT is the product of μT,v and the minimal polynomial Q of the restriction of T to W. In the (likely) case that W has dimension 0 one has Q = 1 and therefore μT = μT,v ; otherwise a recursive computation of Q suffices to find μT .

Example

Define T to be the endomorphism of R3 with matrix, on the canonical basis,

Taking the first canonical basis vector e1 and its repeated images by T one obtains

of which the first three are easily seen to be linearly independent, and therefore span all of R3. The last one then necessarily is a linear combination of the first three, in fact

T 3 ⋅ e1 = −4T 2 ⋅ e1Te1 + e1,

so that:

μT, e1 = X 3 + 4X 2 + XI.

This is in fact also the minimal polynomial μT and the characteristic polynomial χT : indeed μT, e1 divides μT which divides χT, and since the first and last are of degree 3 and all are monic, they must all be the same. Another reason is that in general if any polynomial in T annihilates a vector v, then it also annihilates T ⋅v (just apply T to the equation that says that it annihilates v), and therefore by iteration it annihilates the entire space generated by the iterated images by T of v; in the current case we have seen that for v = e1 that space is all of R3, so μT, e1(T ) = 0. Indeed one verifies for the full matrix that T 3 + 4T 2 + TI3 is the zero matrix:

See also

References

  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556

Read other articles:

Election in Hawaii Main article: 1960 United States presidential election 1960 United States presidential election in Hawaii November 8, 1960 1964 → Turnout93.1%[1]   Nominee John F. Kennedy Richard Nixon Party Democratic Republican Home state Massachusetts California Running mate Lyndon B. Johnson Henry Cabot Lodge Jr. Electoral vote 3 0 Popular vote 92,410 92,295 Percentage 50.03% 49.97% County Results Kennedy   50–60% Nixon  ...

 

Keuskupan JaboticabalDioecesis IaboticaballensisCatedral Nossa Senhora do Carmo (2008)LokasiNegara BrazilProvinsi gerejawiRibeirão PretoStatistikLuas5.175 km2 (1.998 sq mi)Populasi- Total- Katolik(per 2006)446.000327,000 (73.3%)InformasiRitusRitus LatinPendirian25 Januari 1929 (94 tahun lalu)KatedralCatedral Nossa Senhora do CarmoKepemimpinan kiniPausFransiskusUskupFernando Antônio BrochiniSitus webwww.diocesejaboticabal.org.br Keuskupan Jaboticabal (...

 

The Day Before the WeddingSutradara Robby Ertanto Produser Razka Robby Ertanto Agung Haryanto Mala Shinta Ditulis oleh Robby Ertanto Pemeran Amanda Rawles Keanu Campora Della Dartyan Perusahaanproduksi KlikFilm Productions Canary Studios Summerland Tanggal rilis 13 Januari 2023 (2023-01-13) (KlikFilm) Durasi70 menitNegara Indonesia Bahasa Indonesia The Day Before the Wedding adalah film drama Indonesia tahun 2023 yang disutradarai dan ditulis oleh Razka Robby Ertanto. Film produksi K...

General Tadeusz Kościuszko Military University of Land Forces[1]Akademia Wojsk Lądowych imienia generała Tadeusza Kościuszki[1]MottoTruth, Honor, Fatherland (Latin: Veritas, Honor, Patria)TypeLand Forces military universityEstablished2002Studentsfuture officers Polish Land ForcesLocationWrocław, Lower Silesian Voivodeship, Poland.ColoursRed and whiteWebsiteOfficial site The General Tadeusz Kościuszko Military University of Land Forces (Akademia Wojsk Lądowych imienia ge...

 

Tafel Johannisloge Krefeld Johannisloge ist die Bezeichnung für Freimaurerlogen, die ihre Lehrinhalte in drei Graden (Lehrling, Geselle, Meister) im Sinne der Alten Pflichten von 1723 vermitteln. Alle Freimaurer verstehen sich, unabhängig von ihrem Grad oder ihren Aufgaben, als gleichberechtigte Brüder und treffen Entscheidungen ihrer Loge demokratisch. Besonders in kontinentaleuropäischen Logen gehört der Vortrag (so genannte Zeichnung) über freimaurerische oder andere Themen zur Tempe...

 

Cet article est une ébauche concernant une localité kosovare. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ramjan Donje Ramnjane, Доње Рамњане Administration Pays Kosovo District Gjilan/Gnjilane (Kosovo)Kosovo-Pomoravlje (Serbie) Commune Viti/Vitina Démographie Population 895 hab. (2011) Géographie Coordonnées 42° 22′ 34″ nord, 21° 18′ 37″ est Altitu...

Gymnastics in IndiaGymnastics in DelhiGoverning bodyGymnastics Federation of India Gymnastics came of age in India, when at the 2010 Commonwealth Games, Ashish Kumar won the first-ever medal in gymnastics, he won a bronze medal.[1] However, soon after the win, the President of the Gymnastics Federation of India asked Ashish's Chief Coach from the Soviet Union, Vladimir Chertkov: Is this all that you can deliver, a bronze? The comment was widely reported in the press.[citation need...

 

Film festival 27th Berlin International Film FestivalFestival posterOpening filmNickelodeonLocationWest Berlin, GermanyFounded1951AwardsGolden Bear (The Ascent)Festival date24 June – 5 July 1977WebsiteWebsiteBerlin International Film Festival chronology28th 26th The 27th annual Berlin International Film Festival was held from 24 June – 5 July 1977.[1] The festival opened with Nickelodeon by Peter Bogdanovich.[2] The Golden Bear was awarded to the Soviet Union film The Asce...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Alosa maeotica Status konservasiRisiko rendahIUCN906 TaksonomiKerajaanAnimaliaFilumChordataKelasActinopteriOrdoClupeiformesFamiliClupeidaeGenusAlosaSpesiesAlosa maeotica lbs Alosa maeotica adalah sebuah spesies ikan yang menjadi endemik di Laut Azov d...

UFC Fight Night: Henderson vs. Khabilov Ufn 42.jpg Detalhes Promoção Ultimate Fighting Championship Data 02014-06-07 7 de junho de 2014 Local Tingley Coliseum Cidade Albuquerque, New Mexico Cronologia UFC Fight Night: Miocic vs. Maldonado UFC Fight Night: Henderson vs. Khabilov UFC 174: Johnson vs. Bagautinov UFC Fight Night: Henderson vs. Khabilov foi um evento de artes marciais mistas promovido pelo Ultimate Fighting Championship, ocorrido em 02014-06-07 7 de junho de 2014 no Tingley Coli...

 

Infraclass of insects NeopteransTemporal range: Late Carboniferous–Present PreꞒ Ꞓ O S D C P T J K Pg N Bees (order Hymenoptera) can fold their wings over their abdomens, like other Neopterans. Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Subclass: Pterygota Infraclass: NeopteraMartynov, 1923 Subgroups Eumetabola Holometabola Paraneoptera Polyneoptera Neoptera (Ancient Greek néos (new) + pterón (wing)) is a classification group that in...

 

Historic house in Michigan, United States United States historic placeA. Malin HouseU.S. National Register of Historic Places Show map of MichiganShow map of the United StatesLocation54 Bridge St., Petoskey, MichiganCoordinates45°22′7″N 84°57′46″W / 45.36861°N 84.96278°W / 45.36861; -84.96278Area0.3 acres (0.12 ha)Architectural styleQueen AnneMPSPetoskey MRANRHP reference No.86002020[1]Added to NRHPSeptember 10, 1986 The A. Malin...

Canadian concert venue This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Phoenix Concert Theatre – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this template message) Phoenix Concert TheatreEntrance to the Phoenix.Former namesThe Diamond (1984-1991)Location410 Sherb...

 

District of Khyber Pakhtunkhwa in PakistanKurram District ضلع کرمکرم ولسوالۍ‎Kurram Agencyکرم ایجنسئکرم ایجنسئ‎District of Khyber PakhtunkhwaTop: View of Kurram from Paktia BorderBottom: Mountains near ParachinarMap of Kurram DistrictCountry PakistanProvince Khyber PakhtunkhwaDivisionKohatHeadquarterParachinarNumber of Tehsils3Government • TypeDistrict Administration • Deputy CommissionerDr. Aafaq Wazir (BPS-18 PC...

 

Bánh mì PhượngMột ổ bánh mì PhượngLoại hìnhThức ăn nhanhNgành nghềCửa hàngThành lậpThập niên 1990Trụ sở chínhHội AnSố lượng trụ sở2Khu vực hoạt độngSố 2B đường Phan Châu Trinh, phường Minh An, Hội An, Việt NamSản phẩmBánh mìBánh baoNước giải khát Bánh mì Phượng là một tiệm bánh mì nằm ở Phố cổ Hội An thuộc thành phố Hội An, tỉnh Quảng Nam, Việt Nam.[1] Tiệm ...

Placebo discographyPlacebo in 2014Studio albums8Live albums2Compilation albums9EPs6Singles33 The discography of Placebo, an English alternative rock band, consists of eight studio albums, three compilation albums, six extended plays, and 33 singles. Their self-titled debut album was released in 1996 and peaked at number five on the UK Albums Chart.[1] A single from the album, Nancy Boy, peaked at number four on the UK Singles Chart.[1] Placebo's next studio album, 1998's Witho...

 

Sofiero PalaceSofiero slottHelsingborg Municipality Sofiero PalaceSofiero PalaceCoordinates56°05′02″N 12°39′35″E / 56.0839°N 12.6597°E / 56.0839; 12.6597TypeFormer royal palaceSite informationOpen tothe publicYesSite historyBuilt1865 (1865) Gardens of Sofiero Palace Sofiero Palace or just Sofiero (Swedish: Sofiero slott or just Sofiero) in Helsingborg Municipality, Scania was one of the Swedish royal family's country mansions, located 5 kilom...

 

Линда Ронстадт Вэйлон Дженнингс Вилли Нельсон Список кантри-альбомов № 1 в США в 1975 году (Top Country Albums 1975) — это список кантри-альбомов, которые занимали первые места в США в 1975 году по итогам еженедельных хит-парадов журнала Billboard[1][2]. Содержание 1 Список 2 См. та...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menamba...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 3 de octubre de 2014. 1. Diente 2. Esmalte dental 3. Dentina 4. Pulpa dental 5. pulpa coronal o cameral 6. pulpa radicular 7. Cemento 8. Corona 9. Cúspide 10. Surco 11. Cuello 12. Raíz 13. Furca 14. Ápice de la raíz 15. Foramen del ápice 16. Surco gingival 17. Periodonto 18. Encía: 19. Libre o interdental 20. Marginal 21. Alveolar 22. Ligamento periodontal 23. Hueso alveo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!