Mersenne Twister

The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士).[1][2] Its name derives from the choice of a Mersenne prime as its period length.

The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

The most commonly used version of the Mersenne Twister algorithm is based on the Mersenne prime . The standard implementation of that, MT19937, uses a 32-bit word length. There is another implementation (with five variants[3]) that uses a 64-bit word length, MT19937-64; it generates a different sequence.

k-distribution

A pseudorandom sequence of w-bit integers of period P is said to be k-distributed to v-bit accuracy if the following holds.

Let truncv(x) denote the number formed by the leading v bits of x, and consider P of the k v-bit vectors
.
Then each of the possible combinations of bits occurs the same number of times in a period, except for the all-zero combination that occurs once less often.

Algorithmic detail

Visualisation of generation of pseudo-random 32-bit integers using a Mersenne Twister. The 'Extract number' section shows an example where integer 0 has already been output and the index is at integer 1. 'Generate numbers' is run when all integers have been output.

For a w-bit word length, the Mersenne Twister generates integers in the range .

The Mersenne Twister algorithm is based on a matrix linear recurrence over a finite binary field . The algorithm is a twisted generalised feedback shift register[4] (twisted GFSR, or TGFSR) of rational normal form (TGFSR(R)), with state bit reflection and tempering. The basic idea is to define a series through a simple recurrence relation, and then output numbers of the form , where T is an invertible -matrix called a tempering matrix.

The general algorithm is characterized by the following quantities:

  • w: word size (in number of bits)
  • n: degree of recurrence
  • m: middle word, an offset used in the recurrence relation defining the series ,
  • r: separation point of one word, or the number of bits of the lower bitmask,
  • a: coefficients of the rational normal form twist matrix
  • b, c: TGFSR(R) tempering bitmasks
  • s, t: TGFSR(R) tempering bit shifts
  • u, d, l: additional Mersenne Twister tempering bit shifts/masks

with the restriction that is a Mersenne prime. This choice simplifies the primitivity test and k-distribution test that are needed in the parameter search.

The series is defined as a series of w-bit quantities with the recurrence relation:

where denotes concatenation of bit vectors (with upper bits on the left), the bitwise exclusive or (XOR), means the upper wr bits of , and means the lower r bits of .

The subscripts may all be offset by -n

where now the LHS, , is the next generated value in the series in terms of values generated in the past, which are on the RHS.

The twist transformation A is defined in rational normal form as: with as the identity matrix. The rational normal form has the benefit that multiplication by A can be efficiently expressed as: (remember that here matrix multiplication is being done in , and therefore bitwise XOR takes the place of addition)where is the lowest order bit of .

As like TGFSR(R), the Mersenne Twister is cascaded with a tempering transform to compensate for the reduced dimensionality of equidistribution (because of the choice of A being in the rational normal form). Note that this is equivalent to using the matrix A where for T an invertible matrix, and therefore the analysis of characteristic polynomial mentioned below still holds.

As with A, we choose a tempering transform to be easily computable, and so do not actually construct T itself. This tempering is defined in the case of Mersenne Twister as

where is the next value from the series, is a temporary intermediate value, and is the value returned from the algorithm, with and as the bitwise left and right shifts, and as the bitwise AND. The first and last transforms are added in order to improve lower-bit equidistribution. From the property of TGFSR, is required to reach the upper bound of equidistribution for the upper bits.

The coefficients for MT19937 are:

Note that 32-bit implementations of the Mersenne Twister generally have d = FFFFFFFF16. As a result, the d is occasionally omitted from the algorithm description, since the bitwise and with d in that case has no effect.

The coefficients for MT19937-64 are:[5]

Initialization

The state needed for a Mersenne Twister implementation is an array of n values of w bits each. To initialize the array, a w-bit seed value is used to supply through by setting to the seed value and thereafter setting

for from to .

  • The first value the algorithm then generates is based on , not on .
  • The constant f forms another parameter to the generator, though not part of the algorithm proper.
  • The value for f for MT19937 is 1812433253.
  • The value for f for MT19937-64 is 6364136223846793005.[5]

C code

#include <stdint.h>

#define n 624
#define m 397
#define w 32
#define r 31
#define UMASK (0xffffffffUL << r)
#define LMASK (0xffffffffUL >> (w-r))
#define a 0x9908b0dfUL
#define u 11
#define s 7
#define t 15
#define l 18
#define b 0x9d2c5680UL
#define c 0xefc60000UL
#define f 1812433253UL

typedef struct
{
    uint32_t state_array[n];         // the array for the state vector 
    int state_index;                 // index into state vector array, 0 <= state_index <= n-1   always
} mt_state;


void initialize_state(mt_state* state, uint32_t seed) 
{
    uint32_t* state_array = &(state->state_array[0]);
    
    state_array[0] = seed;                          // suggested initial seed = 19650218UL
    
    for (int i=1; i<n; i++)
    {
        seed = f * (seed ^ (seed >> (w-2))) + i;    // Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier.
        state_array[i] = seed; 
    }
    
    state->state_index = 0;
}


uint32_t random_uint32(mt_state* state)
{
    uint32_t* state_array = &(state->state_array[0]);
    
    int k = state->state_index;      // point to current state location
                                     // 0 <= state_index <= n-1   always
    
//  int k = k - n;                   // point to state n iterations before
//  if (k < 0) k += n;               // modulo n circular indexing
                                     // the previous 2 lines actually do nothing
                                     //  for illustration only
    
    int j = k - (n-1);               // point to state n-1 iterations before
    if (j < 0) j += n;               // modulo n circular indexing

    uint32_t x = (state_array[k] & UMASK) | (state_array[j] & LMASK);
    
    uint32_t xA = x >> 1;
    if (x & 0x00000001UL) xA ^= a;
    
    j = k - (n-m);                   // point to state n-m iterations before
    if (j < 0) j += n;               // modulo n circular indexing
    
    x = state_array[j] ^ xA;         // compute next value in the state
    state_array[k++] = x;            // update new state value
    
    if (k >= n) k = 0;               // modulo n circular indexing
    state->state_index = k;
    
    uint32_t y = x ^ (x >> u);       // tempering 
             y = y ^ ((y << s) & b);
             y = y ^ ((y << t) & c);
    uint32_t z = y ^ (y >> l);
    
    return z; 
}

Comparison with classical GFSR

In order to achieve the theoretical upper limit of the period in a TGFSR, must be a primitive polynomial, being the characteristic polynomial of

The twist transformation improves the classical GFSR with the following key properties:

  • The period reaches the theoretical upper limit (except if initialized with 0)
  • Equidistribution in n dimensions (e.g. linear congruential generators can at best manage reasonable distribution in five dimensions)

Variants

CryptMT is a stream cipher and cryptographically secure pseudorandom number generator which uses Mersenne Twister internally.[6][7] It was developed by Matsumoto and Nishimura alongside Mariko Hagita and Mutsuo Saito. It has been submitted to the eSTREAM project of the eCRYPT network.[6] Unlike Mersenne Twister or its other derivatives, CryptMT is patented.

MTGP is a variant of Mersenne Twister optimised for graphics processing units published by Mutsuo Saito and Makoto Matsumoto.[8] The basic linear recurrence operations are extended from MT and parameters are chosen to allow many threads to compute the recursion in parallel, while sharing their state space to reduce memory load. The paper claims improved equidistribution over MT and performance on an old (2008-era) GPU (Nvidia GTX260 with 192 cores) of 4.7 ms for 5×107 random 32-bit integers.

The SFMT (SIMD-oriented Fast Mersenne Twister) is a variant of Mersenne Twister, introduced in 2006,[9] designed to be fast when it runs on 128-bit SIMD.

Intel SSE2 and PowerPC AltiVec are supported by SFMT. It is also used for games with the Cell BE in the PlayStation 3.[11]

TinyMT is a variant of Mersenne Twister, proposed by Saito and Matsumoto in 2011.[12] TinyMT uses just 127 bits of state space, a significant decrease compared to the original's 2.5 KiB of state. However, it has a period of , far shorter than the original, so it is only recommended by the authors in cases where memory is at a premium.

Characteristics

Advantages:

  • Permissively-licensed and patent-free for all variants except CryptMT.
  • Passes numerous tests for statistical randomness, including the Diehard tests and most, but not all of the TestU01 tests.[13]
  • A very long period of . Note that while a long period is not a guarantee of quality in a random number generator, short periods, such as the common in many older software packages, can be problematic.[14]
  • k-distributed to 32-bit accuracy for every (for a definition of k-distributed, see below)
  • Implementations generally create random numbers faster than hardware-implemented methods. A study found that the Mersenne Twister creates 64-bit floating point random numbers approximately twenty times faster than the hardware-implemented, processor-based RDRAND instruction set.[15]

Disadvantages:

  • Relatively large state buffer, of almost 2.5 kB, unless the TinyMT variant is used.
  • Mediocre throughput by modern standards, unless the SFMT variant (discussed below) is used.[16]
  • Exhibits two clear failures (linear complexity) in both Crush and BigCrush in the TestU01 suite. The test, like Mersenne Twister, is based on an -algebra.[13]
  • Multiple instances that differ only in seed value (but not other parameters) are not generally appropriate for Monte-Carlo simulations that require independent random number generators, though there exists a method for choosing multiple sets of parameter values.[17][18]
  • Poor diffusion: can take a long time to start generating output that passes randomness tests, if the initial state is highly non-random—particularly if the initial state has many zeros. A consequence of this is that two instances of the generator, started with initial states that are almost the same, will usually output nearly the same sequence for many iterations, before eventually diverging. The 2002 update to the MT algorithm has improved initialization, so that beginning with such a state is very unlikely.[19] The GPU version (MTGP) is said to be even better.[20]
  • Contains subsequences with more 0's than 1's. This adds to the poor diffusion property to make recovery from many-zero states difficult.
  • Is not cryptographically secure, unless the CryptMT variant (discussed below) is used. The reason is that observing a sufficient number of iterations (624 in the case of MT19937, since this is the size of the state vector from which future iterations are produced) allows one to predict all future iterations.

Applications

The Mersenne Twister is used as default PRNG by the following software:

It is also available in Apache Commons,[47] in the standard C++ library (since C++11),[48][49] and in Mathematica.[50] Add-on implementations are provided in many program libraries, including the Boost C++ Libraries,[51] the CUDA Library,[52] and the NAG Numerical Library.[53]

The Mersenne Twister is one of two PRNGs in SPSS: the other generator is kept only for compatibility with older programs, and the Mersenne Twister is stated to be "more reliable".[54] The Mersenne Twister is similarly one of the PRNGs in SAS: the other generators are older and deprecated.[55] The Mersenne Twister is the default PRNG in Stata, the other one is KISS, for compatibility with older versions of Stata.[56]

Alternatives

An alternative generator, WELL ("Well Equidistributed Long-period Linear"), offers quicker recovery, and equal randomness, and nearly equal speed.[57]

Marsaglia's xorshift generators and variants are the fastest in the class of LFSRs.[58]

64-bit MELGs ("64-bit Maximally Equidistributed -Linear Generators with Mersenne Prime Period") are completely optimized in terms of the k-distribution properties.[59]

The ACORN family (published 1989) is another k-distributed PRNG, which shows similar computational speed to MT, and better statistical properties as it satisfies all the current (2019) TestU01 criteria; when used with appropriate choices of parameters, ACORN can have arbitrarily long period and precision.

The PCG family is a more modern long-period generator, with better cache locality, and less detectable bias using modern analysis methods.[60]

References

  1. ^ Matsumoto, M.; Nishimura, T. (1998). "Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator". ACM Transactions on Modeling and Computer Simulation. 8 (1): 3–30. CiteSeerX 10.1.1.215.1141. doi:10.1145/272991.272995. S2CID 3332028.
  2. ^ E.g. Marsland S. (2011) Machine Learning (CRC Press), §4.1.1. Also see the section "Adoption in software systems".
  3. ^ John Savard. "The Mersenne Twister". A subsequent paper, published in the year 2000, gave five additional forms of the Mersenne Twister with period 2^19937-1. All five were designed to be implemented with 64-bit arithmetic instead of 32-bit arithmetic.
  4. ^ Matsumoto, M.; Kurita, Y. (1992). "Twisted GFSR generators". ACM Transactions on Modeling and Computer Simulation. 2 (3): 179–194. doi:10.1145/146382.146383. S2CID 15246234.
  5. ^ a b "std::mersenne_twister_engine". Pseudo Random Number Generation. Retrieved 2015-07-20.
  6. ^ a b "CryptMt and Fubuki". eCRYPT. Archived from the original on 2012-07-01. Retrieved 2017-11-12.
  7. ^ Matsumoto, Makoto; Nishimura, Takuji; Hagita, Mariko; Saito, Mutsuo (2005). "Cryptographic Mersenne Twister and Fubuki Stream/Block Cipher" (PDF).
  8. ^ Mutsuo Saito; Makoto Matsumoto (2010). "Variants of Mersenne Twister Suitable for Graphic Processors". arXiv:1005.4973v3 [cs.MS].
  9. ^ "SIMD-oriented Fast Mersenne Twister (SFMT)". hiroshima-u.ac.jp. Retrieved 4 October 2015.
  10. ^ "SFMT:Comparison of speed". hiroshima-u.ac.jp. Retrieved 4 October 2015.
  11. ^ "PlayStation3 License". scei.co.jp. Retrieved 4 October 2015.
  12. ^ "Tiny Mersenne Twister (TinyMT)". hiroshima-u.ac.jp. Retrieved 4 October 2015.
  13. ^ a b P. L'Ecuyer and R. Simard, "TestU01: "A C library for empirical testing of random number generators", ACM Transactions on Mathematical Software, 33, 4, Article 22 (August 2007).
  14. ^ Note: 219937 is approximately 4.3 × 106001; this is many orders of magnitude larger than the estimated number of particles in the observable universe, which is 1087.
  15. ^ Route, Matthew (August 10, 2017). "Radio-flaring Ultracool Dwarf Population Synthesis". The Astrophysical Journal. 845 (1): 66. arXiv:1707.02212. Bibcode:2017ApJ...845...66R. doi:10.3847/1538-4357/aa7ede. S2CID 118895524.
  16. ^ "SIMD-oriented Fast Mersenne Twister (SFMT): twice faster than Mersenne Twister". Japan Society for the Promotion of Science. Retrieved 27 March 2017.
  17. ^ Makoto Matsumoto; Takuji Nishimura. "Dynamic Creation of Pseudorandom Number Generators" (PDF). Retrieved 19 July 2015.
  18. ^ Hiroshi Haramoto; Makoto Matsumoto; Takuji Nishimura; François Panneton; Pierre L'Ecuyer. "Efficient Jump Ahead for F2-Linear Random Number Generators" (PDF). Retrieved 12 Nov 2015.
  19. ^ "mt19937ar: Mersenne Twister with improved initialization". hiroshima-u.ac.jp. Retrieved 4 October 2015.
  20. ^ Fog, Agner (1 May 2015). "Pseudo-Random Number Generators for Vector Processors and Multicore Processors". Journal of Modern Applied Statistical Methods. 14 (1): 308–334. doi:10.22237/jmasm/1430454120.
  21. ^ "Random link". Dyalog Language Reference Guide. Retrieved 2020-06-04.
  22. ^ "RANDOMU (IDL Reference)". Exelis VIS Docs Center. Retrieved 2013-08-23.
  23. ^ "Random Number Generators". CRAN Task View: Probability Distributions. Retrieved 2012-05-29.
  24. ^ ""Random" class documentation". Ruby 1.9.3 documentation. Retrieved 2012-05-29.
  25. ^ "random". free pascal documentation. Retrieved 2013-11-28.
  26. ^ "mt_rand — Generate a better random value". PHP Manual. Retrieved 2016-03-02.
  27. ^ "NumPy 1.17.0 Release Notes — NumPy v1.21 Manual". numpy.org. Retrieved 2021-06-29.
  28. ^ "9.6 random — Generate pseudo-random numbers". Python v2.6.8 documentation. Retrieved 2012-05-29.
  29. ^ "8.6 random — Generate pseudo-random numbers". Python v3.2 documentation. Retrieved 2012-05-29.
  30. ^ "random — Generate pseudo-random numbers — Python 3.8.3 documentation". Python 3.8.3 documentation. Retrieved 2020-06-23.
  31. ^ "Design choices and extensions". CMUCL User's Manual. Retrieved 2014-02-03.
  32. ^ "Random states". The ECL manual. Retrieved 2015-09-20.
  33. ^ "Random Number Generation". SBCL User's Manual.
  34. ^ "Random Numbers · The Julia Language". docs.julialang.org. Retrieved 2022-06-21.
  35. ^ "Random Numbers: GLib Reference Manual".
  36. ^ "Random Number Algorithms". GNU MP. Retrieved 2013-11-21.
  37. ^ "16.3 Special Utility Matrices". GNU Octave. Built-in Function: rand
  38. ^ "Random number environment variables". GNU Scientific Library. Retrieved 2013-11-24.
  39. ^ Mélard, G. (2014), "On the accuracy of statistical procedures in Microsoft Excel 2010", Computational Statistics, 29 (5): 1095–1128, CiteSeerX 10.1.1.455.5508, doi:10.1007/s00180-014-0482-5, S2CID 54032450.
  40. ^ "GAUSS 14 Language Reference" (PDF).
  41. ^ "uniform". Gretl Function Reference.
  42. ^ "New random-number generator—64-bit Mersenne Twister".
  43. ^ "Probability Distributions — Sage Reference Manual v7.2: Probablity".
  44. ^ "grand - Random numbers". Scilab Help.
  45. ^ "random number generator". Maple Online Help. Retrieved 2013-11-21.
  46. ^ "Random number generator algorithms". Documentation Center, MathWorks.
  47. ^ "Data Generation". Apache Commons Math User Guide.
  48. ^ "Random Number Generation in C++11" (PDF). Standard C++ Foundation.
  49. ^ "std::mersenne_twister_engine". Pseudo Random Number Generation. Retrieved 2012-09-25.
  50. ^ [1] Mathematica Documentation
  51. ^ "boost/random/mersenne_twister.hpp". Boost C++ Libraries. Retrieved 2012-05-29.
  52. ^ "Host API Overview". CUDA Toolkit Documentation. Retrieved 2016-08-02.
  53. ^ "G05 – Random Number Generators". NAG Library Chapter Introduction. Retrieved 2012-05-29.
  54. ^ "Random Number Generators". IBM SPSS Statistics. Retrieved 2013-11-21.
  55. ^ "Using Random-Number Functions". SAS Language Reference. Retrieved 2013-11-21.
  56. ^ Stata help: set rng -- Set which random-number generator (RNG) to use
  57. ^ P. L'Ecuyer, "Uniform Random Number Generators", International Encyclopedia of Statistical Science, Lovric, Miodrag (Ed.), Springer-Verlag, 2010.
  58. ^ "xorshift*/xorshift+ generators and the PRNG shootout".
  59. ^ Harase, S.; Kimoto, T. (2018). "Implementing 64-bit Maximally Equidistributed F2-Linear Generators with Mersenne Prime Period". ACM Transactions on Mathematical Software. 44 (3): 30:1–30:11. arXiv:1505.06582. doi:10.1145/3159444. S2CID 14923086.
  60. ^ "The PCG Paper". 27 July 2017.

Further reading

Read other articles:

Berchtesgaden Brasão Mapa BerchtesgadenMapa da Alemanha, posição de Berchtesgaden acentuada Administração País  Alemanha Estado Baviera Região administrativa Oberbayern Distrito Berchtesgadener Land Prefeito Rudolf Schaupp Partido no poder FWG Estatística Coordenadas geográficas 47° 37' 53 N 13° 37' 15 E Área 34.78 km² Altitude 520–1100 m População 7649 (2007-06-30) Densidade populacional hab./km² Outras Informações Placa de veículo BGL Código postal...

 

Ambiguitas atau ketaksaan[1] adalah satuan gramatikal dalam bentuk frasa atau kalimat yang bermakna ganda atau mendua arti yang terjadi sebagai akibat dari penafsiran struktur gramatikal yang berbeda. Dalam bahasa lisan penafsiran ganda ini tidak akan terjadi karena struktur gramatikal yang diucapkan akan dibantu oleh unsur intonasi.[2] Kata ambiguitas ini diserap dari bahasa Inggris yakni ambiguity yang berarti suatu konstruksi yang dapat ditafsirkan lebih dari satu arti.[...

 

Спокуса святого Антонія — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ п

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) دايفيد هيرد   معلومات شخصية الميلاد 27 يناير 1950 (73 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم كلية أوبرلينثانوية الموسيقى والفنمدرسة جو

 

Деталь статуї Ахіллеса, палац Ахіллейон, острів Керкіра, скульптор Ернст Гертер Ахілле́сова п'ята́ — після гомерівський міф, переданий римським поетом Гігіном, про те, що мати Ахілла, Фетіда, захотіла зробити тіло свого сина невразливим і для цього занурювала його до св

 

село Гостролуччя Країна  Україна Область Київська область Район Броварський район Громада Баришівська селищна громада Облікова картка gska2.rada.gov.ua  Основні дані Перша згадка 1590[1] Населення 945 чоловік (на 1 січня 2007 року) Площа 4,866 км² Густота населення 194,2 осіб/

American drummer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Patrick Carney – news · newspapers · books · scholar · JSTOR (April 2011) (Learn how and when to remove this template message) Pa...

 

Railway station in Odisha, India Rourkela Junction Indian Railways junction stationRourkela junction railway stationGeneral informationLocationNear New Bus Stand, Rourkela, Odisha IndiaCoordinates22°13′39″N 84°51′46″E / 22.2276°N 84.8629°E / 22.2276; 84.8629Elevation219 m (719 ft)Owned byIndian RailwaysOperated bySouth Eastern RailwaysLine(s)Tatanagar–Bilaspur section of Howrah–Nagpur–Mumbai line, Rourkela–Ranchi section of Rourkela...

 

LunaDewi BulanPatung LunaPlanetBulan[1]SimbolKereta perang, bulan sabitHariSenin (dies Lunae)KuilBukit Aventinus, Bukit PalatiumInformasi pribadiSaudaraSol, AuroraYunaniSelene Dalam agama dan mitologi Romawi Kuno, Luna adalah perwujudan ilahi dari Bulan (bahasa Latin: Lūna pengucapan Latin: [ˈɫ̪uːnä]). Dia sering ditampilkan sebagai pendamping perempuan Matahari, yaitu Sol, yang dianggap sebagai dewa. Luna juga terkadang dilambangkan sebagai aspek dewi rangkap tiga Roma...

Baseball stadium at Florida State University This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mike Martin Field at Dick Howser Stadium – news · newspapers · books · scholar · JSTOR (July 2021) (Learn how and when to remove this template message) Mike Martin Field at Dick Howser StadiumFormer namesSeminole Sta...

 

See also: 2022 United States Senate elections 2022 United States Senate election in Missouri ← 2016 November 8, 2022 2028 →   Nominee Eric Schmitt Trudy Busch Valentine Party Republican Democratic Popular vote 1,146,966 872,694 Percentage 55.4% 42.2% County results Congressional district results State Senate districts results State House districts resultsSchmitt:      40–50%      50–60%    ...

 

Church in Pirenópolis, Goiás, Brazil This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (March 2018) (Learn how and when to remove this template message) View from the Church of the Rosary, circa 1886. The Church of Our Lady of the Rosary of Black Men was a Roman Catholic church located in Pirenópolis, in the Brazilian sta...

Dutch pilot In this Dutch name, the surname is Veldhuyzen van Zanten, not van Zanten. Jacob Veldhuyzen van ZantenBorn5 February 1927Lisse, NetherlandsDiedMarch 27, 1977(1977-03-27) (aged 50)Tenerife, Canary Islands, SpainCause of deathPlane crashNationalityDutchAlma materKLMOccupationPilotYears active1950–1977Known forKLM's chief instructor, Tenerife airport disasterSpouseHenriëtte Veldhuyzen van Zanten-Segers (b. 1926)Children2 Jacob Louis Veldhuyzen van Zanten (5...

 

Children's television series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Hoobs – news · newspapers · books · scholar · JSTOR (February 2018) (Learn...

 

Current subnational legislature representatives List of Malaysian State Assembly Representatives (2018–2023) List of Malaysian State Assembly Representatives (2023–present) The following are the members of the Dewan Undangan Negeri or state assemblies, elected in the 2022 state elections which was part of the 2022 Malaysian general elections. Also included are the list of the Sabah state assembly members who were elected in 2020, Malacca state assembly members who were elected in 2021, Sa...

American magazine This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (April 2013) NF MagazineCategoriesVideo gamesFrequencyBi-monthlyPublisherNF Publishing, LLCFirst issueJanuary 11, 2013CountryUSALanguageEnglishWebsitehttp://www.nintendoforcemagazine.com/ Nintendo Force, or NF Magazine, is a bi-monthly magazine that centers upon various Nintendo hardware products. In December 2012, IGN editor and magazine f...

 

State in the Island of Alderney Politics of Alderney Sovereign Duke of Normandy King Charles III Legislature States of Alderney President William Tate Members of the States of Alderney Judiciary Judge of Alderney Elections Last election Other countries vte The States of Alderney in Session, 2005 The ten states of Alderney Members make up the legislature (the States of Alderney) of the island of Alderney in the Channel Islands. Half of the ten States Members are elected every two years for a f...

 

French Courbet-class battleship Paris, 1913 History France NameParis NamesakeParis Ordered1 August 1911 BuilderForges et Chantiers de la Méditerranée, La Seyne CostF63,000,000 Laid down10 November 1911 Launched28 September 1912 Completed22 August 1914 Commissioned1 August 1914 Stricken21 December 1955 FateScrapped, June 1956 General characteristics (as built) Class and typeCourbet-class battleship Displacement 23,475 t (23,104 long tons) (normal) 25,579 t (25,175 long tons) (full ...

1928 novel The Silver Flame 1950 editionAuthorJames HiltonCountryUnited KingdomLanguageEnglishGenreDramaPublisherButterworth Avon (US)Publication date1928Media typePrint The Silver Flame is a 1928 novel by the British writer James Hilton.[1] The original British publisher was Butterworth. In 1949 it was published in the United States in by Avon under the alternative title Three Loves Had Margaret.[2] It has been described as the last of his apprentice novels before he eme...

 

American film franchise This article is about the whole franchise. For the film, see Jaws (film). For the novel by Peter Benchley, see Jaws (novel). For other uses, see Jaws (disambiguation). JawsOfficial franchise logoDirected by Steven Spielberg (1) Jeannot Szwarc (2) Joe Alves (3) Joseph Sargent (4) Written by Peter Benchley (1) Carl Gottlieb (1–3) Howard Sackler (2) Richard Matheson (3) Guerdon Trueblood (3) Michael de Guzman (4) Based onJaws by Peter BenchleyProduced by Richard D. Zanu...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!