Mebendazole is a highly effective, broad-spectrum antihelmintic indicated for the treatment of nematode infestations, including roundworm, hookworm, whipworm, threadworm (pinworm), and the intestinal form of trichinosis prior to its spread into the tissues beyond the digestive tract. Other drugs are used to treat worm infections outside the digestive tract, as mebendazole is poorly absorbed into the bloodstream.[9] Mebendazole is used alone in those with mild to moderate infestations. It kills parasites relatively slowly, and in those with very heavy infestations, it can cause some parasites to migrate out of the digestive system, leading to appendicitis, bile duct problems, or intestinal perforation. To avoid this, heavily infested patients may be treated with piperazine, either before or instead of mebendazole. Piperazine paralyses the parasites, causing them to pass in the feces.[10] It is also used rarely in the treatment of cystic echinococcosis, also known as hydatid disease. Evidence for effectiveness for this disease, however, is poor.[11]
Mebendazole and other benzimidazole antithelmetics are active against both larval and adult stages of nematodes, and in the cases of roundworm and whipworm, kill the eggs, as well. Paralysis and death of the parasites occurs slowly, and elimination in the feces may require several days.[9]
Special populations
Mebendazole has been shown to cause ill effects in pregnancy in animal models, and no adequate studies of its effects in human pregnancy have been conducted.[2] Whether it can be passed by breastfeeding is unknown.[12][2]
Adverse effects
Mebendazole sometimes causes diarrhea, abdominal pain, and elevated liver enzymes. In rare cases, it has been associated with a dangerously low white blood cell count, low platelet count, and hair loss,[12][13] with a risk of agranulocytosis in rare cases.
Drug interactions
Carbamazepine and phenytoin lower serum levels of mebendazole. Cimetidine does not appreciably raise serum mebendazole (in contrast to the similar drug albendazole), consistent with its poor systemic absorption.[14][15]
Mebendazole works by selectively inhibiting the synthesis of microtubules via binding to the colchicine binding site of β-tubulin, thereby blocking polymerisation of tubulin dimers in intestinal cells of parasites.[17] Disruption of cytoplasmic microtubules leads to blocking the uptake of glucose and other nutrients, resulting in the gradual immobilization and eventual death of the helminths.[9]
Poor absorption in the digestive tract makes mebendazole an efficient drug for treating intestinal parasitic infections with limited adverse effects. However mebendazole has an impact on mammalian cells, mostly by inhibiting polymeration of tubulin dimers, thereby disrupting essential microtubule structures such as mitotic spindle.[18] Disassembly of the mitotic spindle then leads to apoptosis mediated via dephosphorylation of Bcl-2 which allows pro-apoptotic protein Bax to dimerize and initiate programmed cell death.[19]
^World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
^ abcPetri WA in Brunton LL, Chabner BA, Knollmann BC, Ed. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 12th ed., Chapter 42. McGraw-Hill, 2011 New York.
^Martin AR in Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 8th edition, Doerge RF, ed. J.B. Lippincott, 1982, Chapter 4
^"Mebendazole". drugs.com. Archived from the original on 22 February 2015. Retrieved 25 January 2015.
^ abFinberg R, Fingeroth J in Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo, Ed. Harrison's Principles of Internal Medicine, 18th ed., McGraw-Hill, 2012, Chapter 217.
^Luder PJ, Siffert B, Witassek F, Meister F, Bircher J (1986). "Treatment of hydatid disease with high oral doses of mebendazole. Long-term follow-up of plasma mebendazole levels and drug interactions". European Journal of Clinical Pharmacology. 31 (4): 443–8. doi:10.1007/bf00613522. PMID3816925. S2CID41447486.
^Islam N, Chowdhury NA (March 1976). "Mebendazole and pyrantel pamoate as broad-spectrum anthelmintics". The Southeast Asian Journal of Tropical Medicine and Public Health (1): 81–84. PMID1027113.