Mean curvature

In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

The concept was used by Sophie Germain in her work on elasticity theory.[1][2] Jean Baptiste Marie Meusnier used it in 1776, in his studies of minimal surfaces. It is important in the analysis of minimal surfaces, which have mean curvature zero, and in the analysis of physical interfaces between fluids (such as soap films) which, for example, have constant mean curvature in static flows, by the Young–Laplace equation.

Definition

Let be a point on the surface inside the three dimensional Euclidean space R3. Each plane through containing the normal line to cuts in a (plane) curve. Fixing a choice of unit normal gives a signed curvature to that curve. As the plane is rotated by an angle (always containing the normal line) that curvature can vary. The maximal curvature and minimal curvature are known as the principal curvatures of .

The mean curvature at is then the average of the signed curvature over all angles :

.

By applying Euler's theorem, this is equal to the average of the principal curvatures (Spivak 1999, Volume 3, Chapter 2):

More generally (Spivak 1999, Volume 4, Chapter 7), for a hypersurface the mean curvature is given as

More abstractly, the mean curvature is the trace of the second fundamental form divided by n (or equivalently, the shape operator).

Additionally, the mean curvature may be written in terms of the covariant derivative as

using the Gauss-Weingarten relations, where is a smoothly embedded hypersurface, a unit normal vector, and the metric tensor.

A surface is a minimal surface if and only if the mean curvature is zero. Furthermore, a surface which evolves under the mean curvature of the surface , is said to obey a heat-type equation called the mean curvature flow equation.

The sphere is the only embedded surface of constant positive mean curvature without boundary or singularities. However, the result is not true when the condition "embedded surface" is weakened to "immersed surface".[3]

Surfaces in 3D space

For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface:

where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated. Mean Curvature may also be calculated

where I and II denote first and second quadratic form matrices, respectively.

If is a parametrization of the surface and are two linearly independent vectors in parameter space then the mean curvature can be written in terms of the first and second fundamental forms as where , , , , , .[4]

For the special case of a surface defined as a function of two coordinates, e.g. , and using the upward pointing normal the (doubled) mean curvature expression is

In particular at a point where , the mean curvature is half the trace of the Hessian matrix of .

If the surface is additionally known to be axisymmetric with ,

where comes from the derivative of .

Implicit form of mean curvature

The mean curvature of a surface specified by an equation can be calculated by using the gradient and the Hessian matrix

The mean curvature is given by:[5][6]

Another form is as the divergence of the unit normal. A unit normal is given by and the mean curvature is

In fluid mechanics

An alternate definition is occasionally used in fluid mechanics to avoid factors of two:

.

This results in the pressure according to the Young–Laplace equation inside an equilibrium spherical droplet being surface tension times ; the two curvatures are equal to the reciprocal of the droplet's radius

.

Minimal surfaces

A rendering of Costa's minimal surface.

A minimal surface is a surface which has zero mean curvature at all points. Classic examples include the catenoid, helicoid and Enneper surface. Recent discoveries include Costa's minimal surface and the Gyroid.

CMC surfaces

An extension of the idea of a minimal surface are surfaces of constant mean curvature. The surfaces of unit constant mean curvature in hyperbolic space are called Bryant surfaces.[7]

See also

Notes

  1. ^ Marie-Louise Dubreil-Jacotin on Sophie Germain Archived 2008-02-23 at the Wayback Machine
  2. ^ Lodder, J. (2003). "Curvature in the Calculus Curriculum". The American Mathematical Monthly. 110 (7): 593–605. doi:10.2307/3647744. JSTOR 3647744.
  3. ^ Wente, Henry C. (1986). "Counterexample to a conjecture of H. Hopf". Pacific Journal of Mathematics. 121 (1): 193–243. doi:10.2140/pjm.1986.121.193. MR 0815044. Zbl 0586.53003.
  4. ^ Do Carmo, Manfredo (2016). Differential Geometry of Curves and Surfaces (Second ed.). Dover. p. 158. ISBN 978-0-486-80699-0.
  5. ^ Goldman, R. (2005). "Curvature formulas for implicit curves and surfaces". Computer Aided Geometric Design. 22 (7): 632–658. doi:10.1016/j.cagd.2005.06.005.
  6. ^ Spivak, M (1975). A Comprehensive Introduction to Differential Geometry. Vol. 3. Publish or Perish, Boston.
  7. ^ Rosenberg, Harold (2002), "Bryant surfaces", The global theory of minimal surfaces in flat spaces (Martina Franca, 1999), Lecture Notes in Math., vol. 1775, Berlin: Springer, pp. 67–111, doi:10.1007/978-3-540-45609-4_3, ISBN 978-3-540-43120-6, MR 1901614.

References

  • Spivak, Michael (1999), A comprehensive introduction to differential geometry (Volumes 3-4) (3rd ed.), Publish or Perish Press, ISBN 978-0-914098-72-0, (Volume 3), (Volume 4).
  • P.Grinfeld (2014). Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer. ISBN 978-1-4614-7866-9.

Read other articles:

1985 filmThe Detached MissionSpanish poster, citing the NYT: El Rambo Sovietico Arrasa… America Tiembla…Directed byMikhail TumanishviliWritten byYevgeni MesyatsevStarringMikhail NozhkinAleksandr FatyushinSergei NasibovNartai BegalinCinematographyBoris BondarenkoEdited bySvetlana LyashinskayaMusic byViktor BabushkinDistributed byMosfilmRelease date 1985 (1985) Running time96 minutesCountrySoviet UnionLanguageRussian The Detached Mission sometimes translated as Solo Voyage or Solo Jour...

 

Census-designated place in New Hampshire, United StatesNorth Haverhill, New HampshireCensus-designated placeHaverhill Town HallNorth HaverhillShow map of New HampshireNorth HaverhillShow map of the United StatesCoordinates: 44°05′23″N 72°01′36″W / 44.08972°N 72.02667°W / 44.08972; -72.02667CountryUnited StatesStateNew HampshireCountyGraftonTownHaverhillArea[1] • Total4.01 sq mi (10.39 km2) • Land3.59 sq...

 

19th-century mayor of Toledo, Ohio For the Archbishop of Cape Town, see William West Jones. This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: William W. Jones – news · newspapers · books · scholar · JSTOR (October 2018) (Learn how and when to remove this template message) The topic of this article may not meet Wikipedia's notab...

Species of snake This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Striped whipsnake – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this template message) Striped whipsnake Desert striped whipsnake, Masticophis taeniatus taeniatus Conservation status Least Concern...

 

For other people named Sidney Wagner, see Sidney Wagner (disambiguation). American football player (1912–1972) American football player Sid WagnerNo. 17Position:Guard / TacklePersonal informationBorn:(1912-10-19)October 19, 1912Lansing, Michigan, U.S.Died:June 5, 1972(1972-06-05) (aged 59)Forest, Michigan, U.S.Height:5 ft 11 in (1.80 m)Weight:192 lb (87 kg)Career informationHigh school:Lansing (MI) CentralCollege:Michigan StateNFL Draft:1936 / Round: ...

 

Man neemt een bad in de openlucht Met baden - “het nemen van een bad” - wordt de activiteit van het reinigen van de huid, vacht of verenkleed bedoeld, hoewel het ook gedaan wordt als verkoeling, ritueel, toegepaste therapie of recreatief genot. Het baden - met als doel het lichaam te reinigen - wordt ook wel “wassen” genoemd. Mensen gebruiken daarbij veelal zeep en voor het hoofdhaar shampoo. Zowel mensen als dieren nemen van tijd tot tijd een bad. Meestal wordt er bij de activiteit w...

2016 single by Anne-MarieAlarmSingle by Anne-Mariefrom the album Speak Your Mind Released20 May 2016 (2016-05-20)Recorded2015StudioRokstone Studios (London)Length3:25LabelMajor Tom'sAsylumAtlanticSongwriter(s)Anne-Marie NicholsonSteve MacWayne HectorIna WroldsenProducer(s)Steve MacAmir AmorBrunelleAnne-Marie singles chronology Alright with Me(2015) Alarm(2016) Catch 22(2016) Alarm is a song by English singer and songwriter Anne-Marie. It was released on 20 May 2016 by Major...

 

Les migrations serbes dans les Balkans revêtent une grande importance politique, linguistique et culturelle dans l'histoire des Serbes. Ces migrations ont été motivées par diverses raisons : certaines, massives mais ponctuelles, sont conséquence de la politique d'occupation turque, comme la grande migration de 1690 ; d’autres, plus diffuses mais sur des périodes plus longues, parfois des siècles, furent des déplacements causés par la surpopulation ou par des problèmes en...

 

Abarth 500 may refer to the following variants of the Fiat 500: 2009 Abarth 500 Abarth 695 SS – produced from 1964 to 1971 Fiat Cinquecento Abarth – based on the Fiat Cinquecento (500 in Italian) from 1991 Abarth 500 (2008) – produced from 2008 on Abarth 500 (2023) – to be produced from 2023 Topics referred to by the same term This disambiguation page lists articles associated with the title Abarth 500.If an internal link led you here, you may wish to change the link to point directly...

Гожув-Великопольський трамвайTramwaje w Gorzowie Wielkopolskim ОписКраїна  ПольщаМісто Гожув-ВеликопольськийДата відкриття 29 липня 1899 — електричний15 серпня 1924з 1947Дата закриття 11 вересня 192230 січня 1945Оператор ЗКМ «Гожув-Великопольський»Вартість проїзду 2,6 зл.Сайт mzk-gorzow.com.plМарш...

 

Kareumbi Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Malpighiales Famili: Euphorbiaceae Genus: Homalanthus Spesies: Homalanthus populneus(Geiseler) Pax Sinonim Homalanthus sulawesianus Airy ShawHomalanthus populneus minor (Müll.Arg.) Merr.Homalanthus populneus laevis (Blanco) Merr.Homalanthus populneus genuinus Pax, not validly publ.Homalanthus leschenaultianus A.Juss.Homalanthus populneum minus Müll.Arg....

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Nyonya Nunung – berita · surat kabar · buku · cendekiawan · JSTOR Nyonya NunungGenreGelar wicaraKomediPresenterNunungNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiLokasi produksiStudio PSI Penga...

اضغط هنا للاطلاع على كيفية قراءة التصنيف أروية شرقية   حالة الحفظ   أنواع مهددة بالانقراض (خطر انقراض أدنى)[1] المرتبة التصنيفية نوع  التصنيف العلمي  فوق النطاق  حيويات مملكة عليا  حقيقيات النوى مملكة  حيوان عويلم  ثنائيات التناظر مملكة فرعية  ثانوي

 

—— Permukiman di Uni Emirat Arab —— Al Barahaالبراحة Negara Uni Emirat Arab Emirat Dubai Kota Dubai Jumlah daerah 122 Statistik permukiman Luas 1.104 km² Jumlah penduduk 7,823[1] (2000) Kepadatan penduduk 7,086/km² Permukiman sekitarnya Al Muteena, Naif, Hor Al Anz, Al Murar Koordinat 25°16′59″N 55°19′05″E / 25.28306°N 55.31806°E / 25.28306; 55.31806 Al Baraha (Arab: البراحة) merupakan sebuah wilayah di Du...

 

Not to be confused with Order of Our Lady of Bethlehem. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Military Order of Cross-bearers with the Red Star on a Blue Field – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this template message) Emblem of the Order The ...

2017 film by Mohit Suri Half GirlfriendTheatrical release posterDirected byMohit SuriWritten byScreenplay:Tushar HiranandaniDialogues:Ishita MoitraStory byChetan BhagatBased onHalf Girlfriendby Chetan BhagatProduced byShobha KapoorEkta KapoorMohit SuriChetan BhagatStarringArjun KapoorShraddha KapoorCinematographyVishnu RaoEdited byDevendra MurdeshwarMusic byScore:Raju SinghSongs:MithoonTanishk BagchiRishi RichFarhan SaeedAmi MishraRahul MishraProductioncompanyALT EntertainmentDistributed by B...

 

1963 film by Maury Dexter The Young SwingersTheatrical release posterDirected byMaury DexterScreenplay byHarry SpaldingProduced byMaury DexterStarringRod LaurenMolly BeeGene McDanielsJack LarsonKaren GundersonJo HeltonCinematographyJacques R. MarquetteEdited byJodie CopelanMusic byHank LevineProductioncompany20th Century FoxDistributed by20th Century FoxRelease date September 1963 (1963-09) Running time71 minutesCountryUnited StatesLanguageEnglish The Young Swingers is a 1963 Americ...

 

Architecture school of Edinburgh College of Art Edinburgh School of Architecture and Landscape ArchitectureTypePublicEstablished1907LocationEdinburgh, ScotlandCampusLauriston Place and Chambers StreetAffiliationsEdinburgh College of Art University of Edinburgh (2004-present) Heriot-Watt University (1968-2004)Websitewww.eca.ed.ac.uk/architecture-and-landscape-architecture The Edinburgh School of Architecture and Landscape Architecture (ESALA) is part of Edinburgh College of Art at the Universi...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2018) مدير حلبة سيرك أتايدا في فيريا دي هيدالغو 2009 في باتشوكا, هيدالغو, المكسيك مدير الحلبة (بالإنجليزية: ringmaster)‏ أو في بعض الأحيان قائد الحلبة، هو مؤدي كبير في ال...

 

Santo PausSelestinus IAwal masa kepausan422Akhir masa kepausan6 April 432PendahuluBonifasius IPenerusSistus IIIInformasi pribadiNama lahirSelestinusLahirtidak diketahuiRoma, ItaliaMeninggal6 April 432Roma, ItaliaPaus lainnya yang bernama Selestinus Paus Selestinus I (???-6 April 432), adalah Paus Gereja Katolik Roma dari 422 hingga 432. Sebagaimana Paus lainnya sebelum Yohanes II, ia tidak mengganti dengan nama regnal ketika menjadi Paus. Ia adalah seorang Romawi dan kemungkinan adalah keraba...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!