The method requires a transition rate matrix with tridiagonal block structure as follows
where each of B00, B01, B10, A0, A1 and A2 are matrices. To compute the stationary distribution π writing πQ = 0 the balance equations are considered for sub-vectors πi
Observe that the relationship
holds where R is the Neut's rate matrix,[3] which can be computed numerically. Using this we write
which can be solve to find π0 and π1 and therefore iteratively all the πi.
The matrix analytic method is a more complicated version of the matrix geometric solution method used to analyse models with block M/G/1 matrices.[7] Such models are harder because no relationship like πi = π1 Ri – 1 used above holds.[8]
External links
Performance Modelling and Markov Chains (part 2) by William J. Stewart at 7th International School on Formal Methods for the Design of Computer, Communication and Software Systems: Performance Evaluation
^Asmussen, S. R. (2003). "Random Walks". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 220–243. doi:10.1007/0-387-21525-5_8. ISBN978-0-387-00211-8.
^Ramaswami, V. (1990). "A duality theorem for the matrix paradigms in queueing theory". Communications in Statistics. Stochastic Models. 6: 151–161. doi:10.1080/15326349908807141.
^Bini, D.; Meini, B. (1996). "On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems". SIAM Journal on Matrix Analysis and Applications. 17 (4): 906. doi:10.1137/S0895479895284804.
^Latouche, Guy; Ramaswami, V. (1993). "A Logarithmic Reduction Algorithm for Quasi-Birth-Death Processes". Journal of Applied Probability. 30 (3). Applied Probability Trust: 650–674. JSTOR3214773.
^Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor Shridharbhai (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2 ed.). John Wiley & Sons, Inc. p. 259. ISBN0471565253.