Luneburg lens

A circle, shaded sky blue at the center, fading to white at the edge. A bundle of parallel red lines enters from the upper right and converges to a point at the opposite edge of the circle. Another bundle does the same from the upper left.
Cross-section of the standard Luneburg lens, with blue shading proportional to the refractive index

A Luneburg lens (original German Lüneburg-Linse) is a spherically symmetric gradient-index lens. A typical Luneburg lens's refractive index n decreases radially from the center to the outer surface. They can be made for use with electromagnetic radiation from visible light to radio waves.

For certain index profiles, the lens will form perfect geometrical images of two given concentric spheres onto each other. There are an infinite number of refractive-index profiles that can produce this effect. The simplest such solution was proposed by Rudolf Luneburg in 1944.[1] Luneburg's solution for the refractive index creates two conjugate foci outside the lens. The solution takes a simple and explicit form if one focal point lies at infinity, and the other on the opposite surface of the lens. J. Brown and A. S. Gutman subsequently proposed solutions which generate one internal focal point and one external focal point.[2][3] These solutions are not unique; the set of solutions are defined by a set of definite integrals which must be evaluated numerically.[4]

Designs

Luneburg's solution

Numerical simulation of a Luneburg lens illuminated by a point source at varying positions.
A Luneburg lens converts a point source into a collimated beam when the source is placed at its edge.

Each point on the surface of an ideal Luneburg lens is the focal point for parallel radiation incident on the opposite side. Ideally, the dielectric constant of the material composing the lens falls from 2 at its center to 1 at its surface (or equivalently, the refractive index falls from to 1), according to

where is the radius of the lens. Because the refractive index at the surface is the same as that of the surrounding medium, no reflection occurs at the surface. Within the lens, the paths of the rays are arcs of ellipses.

Maxwell's fish-eye lens

A circle, shaded sky blue at the center, fading to white at the edge. A bundle of red curves emanate from a point on the circumference and re-converge at a point at the opposite edge of the circle. Another bundle does the same from the upper left.
Cross-section of Maxwell's fish-eye lens, with blue shading representing increasing refractive index

Maxwell's fish-eye lens is also an example of the generalized Luneburg lens. The fish-eye, which was first fully described by Maxwell in 1854[5] (and therefore pre-dates Luneburg's solution), has a refractive index varying according to

where is the index of refraction at the center of the lens and is the radius of the lens's spherical surface.[6] The index of refraction at the lens's surface is . The lens images each point on the spherical surface to the opposite point on the surface. Within the lens, the paths of the rays are arcs of circles.

Publication and attribution

The properties of this lens are described in one of a number of set problems or puzzles in the 1853 Cambridge and Dublin Mathematical Journal.[7] The challenge is to find the refractive index as a function of radius, given that a ray describes a circular path, and further to prove the focusing properties of the lens. The solution is given in the 1854 edition of the same journal.[5] The problems and solutions were originally published anonymously, but the solution of this problem (and one other) were included in Niven's The Scientific Papers of James Clerk Maxwell,[8] which was published 11 years after Maxwell's death.

Applications

In practice, Luneburg lenses are normally layered structures of discrete concentric shells, each of a different refractive index. These shells form a stepped refractive index profile that differs slightly from Luneburg's solution. This kind of lens is usually employed for microwave frequencies, especially to construct efficient microwave antennas and radar calibration standards. Cylindrical analogues of the Luneburg lens are also used for collimating light from laser diodes.

Radar reflector

Luneburg reflectors (the marked protrusion) on an F-35

A radar reflector can be made from a Luneburg lens by metallizing parts of its surface. Radiation from a distant radar transmitter is focussed onto the underside of the metallization on the opposite side of the lens; here it is reflected, and focussed back onto the radar station. A difficulty with this scheme is that metallized regions block the entry or exit of radiation on that part of the lens, but the non-metallized regions result in a blind-spot on the opposite side.

Removable Luneburg lens type radar reflectors are sometimes attached to military aircraft in order to make stealth aircraft visible during training operations, or to conceal their true radar signature. Unlike other types of radar reflectors, their shape doesn't affect the handling of the aircraft.[9][10]

Microwave antenna

Type 984 3D radar on HMS Victorious, 1961, using a Luneburg lens

A Luneburg lens can be used as the basis of a high-gain radio antenna. This antenna is comparable to a dish antenna, but uses the lens rather than a parabolic reflector as the main focusing element. As with the dish antenna, a feed to the receiver or from the transmitter is placed at the focus, the feed typically consisting of a horn antenna. The phase centre of the feed horn must coincide with the point of focus, but since the phase centre is invariably somewhat inside the mouth of the horn, it cannot be brought right up against the surface of the lens. Consequently it is necessary to use a variety of Luneburg lens that focusses somewhat beyond its surface,[11] rather than the classic lens with the focus lying on the surface.

A Luneburg lens antenna offers a number of advantages over a parabolic dish. Because the lens is spherically symmetric, the antenna can be steered by moving the feed around the lens, without having to bodily rotate the whole antenna. Again, because the lens is spherically symmetric, a single lens can be used with several feeds looking in widely different directions. In contrast, if multiple feeds are used with a parabolic reflector, all must be within a small angle of the optical axis to avoid suffering coma (a form of de-focussing). Apart from offset systems, dish antennas suffer from the feed and its supporting structure partially obscuring the main element (aperture blockage); in common with other refracting systems, the Luneburg lens antenna avoids this problem.

A variation on the Luneburg lens antenna is the hemispherical Luneburg lens antenna or Luneburg reflector antenna. This uses just one hemisphere of a Luneburg lens, with the cut surface of the sphere resting on a reflecting metal ground plane. The arrangement halves the weight of the lens, and the ground plane provides a convenient means of support. However, the feed does partially obscure the lens when the angle of incidence on the reflector is less than about 45°.

Path of a ray within the lens

For any spherically symmetric lens, each ray lies entirely in a plane passing through the centre of the lens. The initial direction of the ray defines a line which together with the centre-point of the lens identifies a plane bisecting the lens. Being a plane of symmetry of the lens, the gradient of the refractive index has no component perpendicular to this plane to cause the ray to deviate either to one side of it or the other. In the plane, the circular symmetry of the system makes it convenient to use polar coordinates to describe the ray's trajectory.

Given any two points on a ray (such as the point of entry and exit from the lens), Fermat's principle asserts that the path that the ray takes between them is that which it can traverse in the least possible time. Given that the speed of light at any point in the lens is inversely proportional to the refractive index, and by Pythagoras, the time of transit between two points and is

where is the speed of light in vacuum. Minimizing this yields a second-order differential equation determining the dependence of on along the path of the ray. This type of minimization problem has been extensively studied in Lagrangian mechanics, and a ready-made solution exists in the form of the Beltrami identity, which immediately supplies the first integral of this second-order equation. Substituting (where represents ), into this identity gives

where is a constant of integration. This first-order differential equation is separable, that is it can be re-arranged so that only appears on one side, and only on the other:[1]

The parameter is a constant for any given ray, but differs between rays passing at different distances from the centre of the lens. For rays passing through the centre, it is zero. In some special cases, such as for Maxwell's fish-eye, this first order equation can be further integrated to give a formula for as a function of . In general it provides the relative rates of change of and , which may be integrated numerically to follow the path of the ray through the lens.

See also

References

  1. ^ a b Luneburg, R. K. (1944). Mathematical Theory of Optics. Providence, Rhode Island: Brown University. pp. 189–213.
  2. ^ Brown, J. (1953). Wireless Engineer. 30: 250. {{cite journal}}: Missing or empty |title= (help)
  3. ^ Gutman, A. S. (1954). "Modified Luneberg Lens". J. Appl. Phys. 25 (7): 855–859. Bibcode:1954JAP....25..855G. doi:10.1063/1.1721757.
  4. ^ Morgan, S. P. (1958). "General solution of the Luneburg lens problem". J. Appl. Phys. 29 (9): 1358–1368. Bibcode:1958JAP....29.1358M. doi:10.1063/1.1723441. S2CID 119949981.
  5. ^ a b "Solutions of problems (prob. 3, vol. VIII. p. 188)". The Cambridge and Dublin Mathematical Journal. 9. Macmillan: 9–11. 1854.
  6. ^ Badri, S Hadi and Gilarlue, MM (2019). "Maxwell's fisheye lens as efficient power coupler between dissimilar photonic crystal waveguides". Optik. 185. Elsevier: 566–570. arXiv:1904.01242. Bibcode:2019Optik.185..566B. doi:10.1016/j.ijleo.2019.03.163. S2CID 91184610.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Problems (3)". The Cambridge and Dublin Mathematical Journal. 8. Macmillan: 188. 1853.
  8. ^ Niven, ed. (1890). The Scientific Papers of James Clerk Maxwell. New York: Dover Publications. p. 76.
  9. ^ "Looking through a Luneburg Lens". www.eahison.com. 2019-08-08. Archived from the original on 2021-09-27. Retrieved 2021-04-05.
  10. ^ Lockie, Alex (5 May 2017). "This strange mod to the F-35 kills its stealth near Russian defenses – and there's good reason for that". Business Insider. Archived from the original on 25 December 2023.
  11. ^ Lo, Y. T.; Lee, S. W. (1993). Antenna Handbook: Antenna theory. Springer. p. 40. ISBN 9780442015930.

Read other articles:

Jaksa Agung Muda Bidang Pembinaan Kejaksaan Agung Republik IndonesiaGambaran umumDasar hukumPeraturan Presiden Nomor 38 Tahun 2010Susunan organisasiJaksa Agung Muda PembinaanBambang Sugeng Rukmono[1]Kantor pusatJl. Sultan Hasanuddin No.1 Kebayoran Baru Jakarta Selatan - IndonesiaSitus webwww.kejaksaan.go.id Jaksa Agung Muda Bidang Pembinaan disingkat (Jambin) merupakan unsur pembantu pimpinan dalam melaksanakan tugas dan wewenang Kejaksaan di bidang pembinaan, bertanggung jawab k...

 

Vanessa Chantal Paradis, (nama belakang diucapkan Para-DEE) (lahir 22 Desember 1972) adalah seorang penyanyi dan aktris Prancis. Vanessa ParadisParadis pada tahun 2012LahirVanessa Chantal Paradis22 Desember 1972 (umur 50)Saint-Maur-des-Fossés, Val-de-Marne, PrancisPekerjaanPenyanyiPenulis LaguAktrisModelTahun aktif1981–sekarangSuami/istriSamuel Benchetrit ​ ​(m. 2018)​PasanganJohnny Depp(1998–2012)Anak2; Lily-Rose Depp, John Christopher Depp I...

 

ヘルソン州Херсонська область 軍事占領と併合 旗紋章 ヘルソン州:黄色:占領されていないウクライナの領土青緑色:占領から解放されたウクライナの領土桃色:ロシアのウクライナ支配地域 ヘルソン州 – スニフリフカの周辺とキンブルン半島の外側部分も付属[注釈 1] – 2022年9月30日以降のロシアの領土主張:黄色:現在占領されていないウクライナの領土

Association football club in England This article is about the men's football club. For the women's team, see Plymouth Argyle W.F.C. Football clubPlymouth ArgyleFull namePlymouth Argyle Football ClubNickname(s)The PilgrimsFounded1886; 137 years ago (1886), as Argyle F.C.GroundHome ParkCapacity17,900[1]OwnerSimon HallettChairmanSimon HallettManagerSteven SchumacherLeagueEFL Championship2022–23EFL League One, 1st of 24 (promoted)WebsiteClub website Home colours Away ...

 

Pemilihan Presiden Indonesia 1945196318 Agustus 194527 suara anggota Panitia Persiapan Kemerdekaan IndonesiaDitetapkan berdasarkan perolehan suara terbanyak untuk menangKandidat   Calon Soekarno Partai Nonpartisan Suara elektoral 27 Persentase 100,00% Hasil suara Peta persebaran suara Suara Panitia Persiapan Kemerdekaan Indonesia   Soekarno: 27 kursi Presiden terpilih Soekarno Nonpartisan Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan pres...

 

أولغا كارمونا Olga Carmona   معلومات شخصية الميلاد 12 يونيو 2000 (23 سنة)  إشبيلية  الطول 1.60 متر  مركز اللعب نصف الجناح  الجنسية إسبانيا  الفرق  سنواتفريقمبارياتأهداف2020– ريال مدريد النسائي 82 (10)المسيرة الاحترافية  2017–2020 إشبيلية للسيدات 65 (7)المنتخب الوطني ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2017) لاري سيغفريد معلومات شخصية الميلاد 22 مايو 1939(1939-05-22)شيلبي الوفاة أكتوبر 14, 2010 (عن عمر ناهز 71 عاماً)كليفلاند سبب الوفاة نوبة قلبية  الطول 6 قدم 3 بوصة ...

 

Acne Studios AB Логотип Тип приватне підприємствоФорма власності AktiebolagГалузь одяг, взуття, аксесуариЗасновано 1996Засновник(и) Джонні ЙоганссонМатс Йоганссон Джеспер КутхофдТомас СкоґінгШтаб-квартира Floragatan 13114 31 СтокгольмШвеція59°20′35″ пн. ш. 18°04′31″ сх. д. / ...

 

For other people called Princess Alicia of Bourbon-Parma, see Princess Alice of Bourbon-Parma. Duchess of Calabria Infanta AliciaDuchess of CalabriaBorn(1917-11-13)13 November 1917Vienna, Austria-HungaryDied28 March 2017(2017-03-28) (aged 99)[1][2]Madrid, SpainBurialRoyal Pantheon of Glashütten, Mönichkirchen[3]Spouse Infante Alfonso, Duke of Calabria ​ ​(m. 1936; died 1964)​Issue Princess Teresa, Duchess of Salern...

Wiel Coerver Tanggal lahir (1924-12-03)3 Desember 1924Tempat lahir Kerkrade, BelandaTanggal meninggal 22 April 2011(2011-04-22) (umur 86)Tempat meninggal Kerkrade, BelandaKepelatihanTahun Tim 1959–1965 S.V.N.1965–1966 Rapid JC1966–1969 Sparta Rotterdam1970–1973 N.E.C.1973–1975 Feyenoord Rotterdam1975–1976 Indonesia1976–1977 Go Ahead Eagles Wiel Coerver (3 Desember 1924 – 22 April 2011) adalah seorang mantan pemain dan pelatih sepak bola yang berasal dari Bel...

 

Bagian dari seriAgama Hindu Umat Sejarah Topik Sejarah Mitologi Kosmologi Dewa-Dewi Keyakinan Brahman Atman Karmaphala Samsara Moksa Ahimsa Purushartha Maya Filsafat Samkhya Yoga Mimamsa Nyaya Waisesika Wedanta Dwaita Adwaita Wisistadwaita Pustaka Weda Samhita Brāhmana Aranyaka Upanishad Wedangga Purana Itihasa Bhagawadgita Manusmerti Arthasastra Yogasutra Tantra Ritual Puja Meditasi Yoga Bhajan Upacara Mantra Murti Homa Perayaan Dipawali Nawaratri Siwaratri Holi Janmashtami Durgapuja Nyepi ...

 

Historic building in Houston, Texas, U.S. United States historic placeKennedy BakeryU.S. National Register of Historic PlacesRecorded Texas Historic Landmark The building's exterior in 2010Show map of Houston DowntownShow map of TexasShow map of the United StatesLocation813 Congress St., Houston, TexasCoordinates29°45′46″N 95°21′41″W / 29.76278°N 95.36139°W / 29.76278; -95.36139Arealess than one acreBuilt1860NRHP reference No.79002963[1]RT...

此條目没有列出任何参考或来源。 (2015年2月7日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 日語寫法日語原文不破 万作假名ふわ ばんさく平文式罗马字Fuwa Bansaku日語舊字體不破 萬作 不破萬作(1578年-1595年)是安土桃山時代豐臣秀次的小姓。被譽為絕世的美少年,有「天下三美少年」、「戰...

 

CBD Beijing dengan menara TV Pusat Kebudayaan (paling kiri), Kantor Pusat China Central Television (kedua dari kiri) dan World Trade Center Tiongkok Menara III (menjulang di kanan), masing-masing menempati peringkat gedung tertinggi ke 14, 8, dan 2 di kota Beijing. Gedung Menara CITIC (Zun Tiongkok) menjulang di tengah. Daftar gedung tertinggi di Beijing mencantumkan peringkat gedung pencakar langit yang ada di Beijing, ibu kota Republik Rakyat Tiongkok berdasarkan tingginya. Bangunan terting...

 

Suspension bridge between Philadelphia, Pennsylvania and Camden, New Jersey This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Benjamin Franklin Bridge – news · newspapers · books · scholar · JSTOR (October 2022) (Learn how and when to remove this template message) Benjamin Franklin BridgeBenjamin Franklin Brid...

Mammalian protein found in Homo sapiens CANXIdentifiersAliasesCANX, CNX, IP90, P90, calnexinExternal IDsOMIM: 114217 MGI: 88261 HomoloGene: 1324 GeneCards: CANX Gene location (Human)Chr.Chromosome 5 (human)[1]Band5q35.3Start179,678,628 bp[1]End179,730,925 bp[1]Gene location (Mouse)Chr.Chromosome 11 (mouse)[2]Band11 B1.3|11 30.46 cMStart50,184,788 bp[2]End50,216,500 bp[2]RNA expression patternBgeeHumanMouse (ortholog)Top expressed instromal ...

 

Halaman ini berisi artikel tentang Tewfik Pasha. Untuk vizier agung Utsmaniyah terakhir, lihat Ahmet Tevfik Pasha. Tewfik PashaKhedive Mesir dan SudanBerkuasa1879–1892PendahuluIsmail PashaPenerusMalik Muhammad Abbas Hilmi Sheikh Abdul Hamid Amir Ghulam Ali Mirza Khan PashaKelahiran15 November 1852 (1852-11-15)KairoKematian7 Januari 1892(1892-01-07) (umur 39)HelwanAyahIsmail PashaIbuPutri Shafiq-NurPasanganEmina IlhamyAnakPutri Nazli binti Muhammed HanımAbbas II Hilmi BeyPangeran ...

 

HMS Hood di Australia pada sebuah tur, 17 Maret 1924 Sejarah Britania Raya Asal nama Laksamana Samuel HoodDipesan 7 April 1916Pembangun John Brown & CompanyPasang lunas 1 September 1916Diluncurkan 22 Agustus 1918Mulai berlayar 15 Mei 1920Beroperasi 1920–1941Identifikasi Nomor lambung: 51Motto Ventis Secundis (Latin: With Favourable Winds)[1]Julukan The Mighty HoodNasib Tenggelam selama Pertempuran Selat Denmark, 24 Mei 1941Lencana A Cornish Chough bearing an anchor facing left ...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 長野県道・愛知県道・静岡県道1号飯田富山佐久間線 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年10月) 主要...

 

バイロン・パットン・ハリスンアメリカ合衆国上院議員ミシシッピ州選出任期1919年3月5日 – 1941年6月22日前任者ジェイムズ・K・ヴァーダマン後任者ジェイムズ・イーストランド第85代アメリカ合衆国上院仮議長任期1941年1月6日 – 1941年6月22日大統領ジョン・ナンス・ガーナー(副大統領)ヘンリー・A・ウォーレス(副大統領)指導者アルバン・W・バークリ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!