Littelmann path model

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

Developed as a bridge between the theory of crystal bases arising from the work of Kashiwara and Lusztig on quantum groups and the standard monomial theory of C. S. Seshadri and Lakshmibai, Littelmann's path model associates to each irreducible representation a rational vector space with basis given by paths from the origin to a weight as well as a pair of root operators acting on paths for each simple root. This gives a direct way of recovering the algebraic and combinatorial structures previously discovered by Kashiwara and Lusztig using quantum groups.

Background and motivation

Some of the basic questions in the representation theory of complex semisimple Lie algebras or compact semisimple Lie groups going back to Hermann Weyl include:[1][2]

  • For a given dominant weight λ, find the weight multiplicities in the irreducible representation L(λ) with highest weight λ.
  • For two highest weights λ, μ, find the decomposition of their tensor product L(λ) L(μ) into irreducible representations.
  • Suppose that is the Levi component of a parabolic subalgebra of a semisimple Lie algebra . For a given dominant highest weight λ, determine the branching rule for decomposing the restriction of L(λ) to .[3]

(Note that the first problem, of weight multiplicities, is the special case of the third in which the parabolic subalgebra is a Borel subalgebra. Moreover, the Levi branching problem can be embedded in the tensor product problem as a certain limiting case.)

Answers to these questions were first provided by Hermann Weyl and Richard Brauer as consequences of explicit character formulas,[4] followed by later combinatorial formulas of Hans Freudenthal, Robert Steinberg and Bertram Kostant; see Humphreys (1994). An unsatisfactory feature of these formulas is that they involved alternating sums for quantities that were known a priori to be non-negative. Littelmann's method expresses these multiplicities as sums of non-negative integers without overcounting. His work generalizes classical results based on Young tableaux for the general linear Lie algebra n or the special linear Lie algebra n:[5][6][7][8]

  • Issai Schur's result in his 1901 dissertation that the weight multiplicities could be counted in terms of column-strict Young tableaux (i.e. weakly increasing to the right along rows, and strictly increasing down columns).
  • The celebrated Littlewood–Richardson rule that describes both tensor product decompositions and branching from m+n to m n in terms of lattice permutations of skew tableaux.

Attempts at finding similar algorithms without overcounting for the other classical Lie algebras had only been partially successful.[9]

Littelmann's contribution was to give a unified combinatorial model that applied to all symmetrizable Kac–Moody algebras and provided explicit subtraction-free combinatorial formulas for weight multiplicities, tensor product rules and branching rules. He accomplished this by introducing the vector space V over Q generated by the weight lattice of a Cartan subalgebra; on the vector space of piecewise-linear paths in V connecting the origin to a weight, he defined a pair of root operators for each simple root of . The combinatorial data could be encoded in a coloured directed graph, with labels given by the simple roots.

Littelmann's main motivation[10] was to reconcile two different aspects of representation theory:

Although differently defined, the crystal basis, its root operators and crystal graph were later shown to be equivalent to Littelmann's path model and graph; see Hong & Kang (2002, p. xv). In the case of complex semisimple Lie algebras, there is a simplified self-contained account in Littelmann (1997) relying only on the properties of root systems; this approach is followed here.

Definitions

Let P be the weight lattice in the dual of a Cartan subalgebra of the semisimple Lie algebra .

A Littelmann path is a piecewise-linear mapping

such that π(0) = 0 and π(1) is a weight.

Let (H α) be the basis of consisting of "coroot" vectors, dual to basis of * formed by simple roots (α). For fixed α and a path π, the function has a minimum value M.

Define non-decreasing self-mappings l and r of [0,1] Q by

Thus l(t) = 0 until the last time that h(s) = M and r(t) = 1 after the first time that h(s) = M.

Define new paths πl and πr by

The root operators eα and fα are defined on a basis vector [π] by

  • if r (0) = 0 and 0 otherwise;
  • if l (1) = 1 and 0 otherwise.

The key feature here is that the paths form a basis for the root operators like that of a monomial representation: when a root operator is applied to the basis element for a path, the result is either 0 or the basis element for another path.

Properties

Let be the algebra generated by the root operators. Let π(t) be a path lying wholly within the positive Weyl chamber defined by the simple roots. Using results on the path model of C. S. Seshadri and Lakshmibai, Littelmann showed that

  • the -module generated by [π] depends only on π(1) = λ and has a Q-basis consisting of paths [σ];
  • the multiplicity of the weight μ in the integrable highest weight representation L(λ) is the number of paths σ with σ(1) = μ.

There is also an action of the Weyl group on paths [π]. If α is a simple root and k = h(1), with h as above, then the corresponding reflection sα acts as follows:

  • sα [π] = [π] if k = 0;
  • sα [π]= fαk [π] if k > 0;
  • sα [π]= eαk [π] if k < 0.

If π is a path lying wholly inside the positive Weyl chamber, the Littelmann graph is defined to be the coloured, directed graph having as vertices the non-zero paths obtained by successively applying the operators fα to π. There is a directed arrow from one path to another labelled by the simple root α, if the target path is obtained from the source path by applying fα.

  • The Littelmann graphs of two paths are isomorphic as coloured, directed graphs if and only if the paths have the same end point.

The Littelmann graph therefore only depends on λ. Kashiwara and Joseph proved that it coincides with the "crystal graph" defined by Kashiwara in the theory of crystal bases.

Applications

Character formula

If π(1) = λ, the multiplicity of the weight μ in L(λ) is the number of vertices σ in the Littelmann graph with σ(1) = μ.

Generalized Littlewood–Richardson rule

Let π and σ be paths in the positive Weyl chamber with π(1) = λ and σ(1) = μ. Then

where τ ranges over paths in such that π τ lies entirely in the positive Weyl chamber and the concatenation π τ (t) is defined as π(2t) for t ≤ 1/2 and π(1) + τ( 2t – 1) for t ≥ 1/2.

Branching rule

If is the Levi component of a parabolic subalgebra of with weight lattice P1 P then

where the sum ranges over all paths σ in which lie wholly in the positive Weyl chamber for .

See also

Notes

  1. ^ Weyl 1953
  2. ^ Humphreys 1994
  3. ^ Every complex semisimple Lie algebra is the complexification of the Lie algebra of a compact connected simply connected semisimple Lie group. The subalgebra corresponds to a maximal rank closed subgroup, i.e. one containing a maximal torus.
  4. ^ Weyl 1953, p. 230,312. The "Brauer-Weyl rules" for restriction to maximal rank subgroups and for tensor products were developed independently by Brauer (in his thesis on the representations of the orthogonal groups) and by Weyl (in his papers on representations of compact semisimple Lie groups).
  5. ^ Littlewood 1950
  6. ^ Macdonald 1998
  7. ^ Sundaram 1990
  8. ^ King 1990
  9. ^ Numerous authors have made contributions, including the physicist R. C. King, and the mathematicians S. Sundaram, I. M. Gelfand, A. Zelevinsky and A. Berenstein. The surveys of King (1990) and Sundaram (1990) give variants of Young tableaux which can be used to compute weight multiplicities, branching rules and tensor products with fundamental representations for the remaining classical Lie algebras. Berenstein & Zelevinsky (2001) discuss how their method using convex polytopes, proposed in 1988, is related to Littelmann paths and crystal bases.
  10. ^ Littelmann 1997

References

  • Ariki, Susumu (2002), Representations of Quantum Algebras and Combinatorics of Young Tableaux, University Lecture Series, vol. 26, American Mathematical Society, ISBN 0821832328
  • Berenstein, Arkady; Zelevinsky, Andrei (2001), "Tensor product multiplicities, canonical bases and totally positive varieties", Invent. Math., 143 (1): 77–128, arXiv:math/9912012, Bibcode:2001InMat.143...77B, doi:10.1007/s002220000102, S2CID 17648764
  • Hong, Jin; Kang, Seok-Jin (2002), Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, ISBN 0821828746
  • King, Ronald C. (1990), "S-functions and characters of Lie algebras and superalgebras", Institute for Mathematics and Its Applications, IMA Vol. Math. Appl., 19, Springer-Verlag: 226–261, Bibcode:1990IMA....19..226K
  • Humphreys, James E. (1994), Introduction to Lie Algebras and Representation Theory (2 ed.), Springer-Verlag, ISBN 0-387-90053-5
  • Littelmann, Peter (1994), "A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras", Invent. Math., 116: 329–346, Bibcode:1994InMat.116..329L, doi:10.1007/BF01231564, S2CID 85546837
  • Littelmann, Peter (1995), "Paths and root operators in representation theory", Ann. of Math., 142 (3), Annals of Mathematics: 499–525, doi:10.2307/2118553, JSTOR 2118553
  • Littelmann, Peter (1997), "Characters of Representations and Paths in R*", Proceedings of Symposia in Pure Mathematics, 61, American Mathematical Society: 29–49, doi:10.1090/pspum/061/1476490 [instructional course]
  • Littlewood, Dudley E. (1977) [1950], The Theory of Group Characters and Matrix Representations of Groups, AMS Chelsea Publishing Series, vol. 357 (2nd ed.), American Mathematical Society, ISBN 978-0-8218-7435-6
  • Macdonald, Ian G. (1998) [1979], Symmetric Functions and Hall Polynomials, Oxford mathematical monographs (2nd ed.), Clarendon Press, ISBN 978-0-19-850450-4
  • Mathieu, Olivier (1995), Le modèle des chemins, Exposé No. 798, Séminaire Bourbaki (astérique), vol. 37
  • Sundaram, Sheila (1990), "Tableaux in the representation theory of the classical Lie groups", Institute for Mathematics and Its Applications, IMA Vol. Math. Appl., 19, Springer-Verlag: 191–225, Bibcode:1990IMA....19..191S
  • Weyl, Hermann (2016) [1953], The Classical Groups: Their Invariants and Representations (PMS-1), Princeton Landmarks in Mathematics and Physics, vol. 45 (2nd ed.), Princeton University Press, ISBN 978-1-4008-8390-5

Read other articles:

Singkatan stasiun ini bukan berarti Partai Amanat Nasional CB05BK05 PancoranStasiun LRT JabodebekLokasiJalan Gatot Subroto, Pancoran, Pancoran, Jakarta SelatanDaerah Khusus Ibukota JakartaIndonesiaKoordinat6°14′32″S 106°50′18″E / 6.242127211352091°S 106.83846930279944°E / -6.242127211352091; 106.83846930279944Koordinat: 6°14′32″S 106°50′18″E / 6.242127211352091°S 106.83846930279944°E / -6.242127211352091; 106.838469302799...

 

Pingree RoadPingree Road station in November 2016.General informationLocation570 Congress Parkway at Pingree RoadCrystal Lake, IllinoisCoordinates42°14′03″N 88°17′53″W / 42.2342°N 88.2980°W / 42.2342; -88.2980Owned byMetraPlatforms2 side platformsTracks2ConstructionStructure typeElevatedParkingYes: VendingBicycle facilitiesYesAccessibleYesOther informationFare zoneIHistoryOpenedSeptember 7, 2005Passengers2018707 (average weekday)[1]  ...

 

Edith Gaute Edith Gaute en la década del '50Información personalNombre de nacimiento Ethel Edith GauteNacimiento 27 de agosto de 1931Buenos Aires, ArgentinaFallecimiento 22 de septiembre de 2013 (82 años)Buenos Aires, ArgentinaNacionalidad ArgentinaInformación profesionalOcupación Actriz y actriz de cine [editar datos en Wikidata] Edith Gaute (Buenos Aires, Argentina, 27 de agosto de 1931 - ibídem, 22 de septiembre de 2013) fue una actriz de cine, radio y teatro argentina. Car...

Do You RememberSingel oleh Jay Sean kolaborasi Sean Paul dan Lil Jondari album All or NothingDirilis3 November 2009Formatunduhan musik, CDDirekamSeptember 2009GenrePop, R&B, dance-popDurasi3:31LabelJayded, 2Point9 Records, Cash Money Records, Universal RepublicPenciptaJay Sean, Sean Paul, J remy (Jeremy Skaller & Robert Larow), Bobby Bass, Jared Cotter, Frankie Storm, & J PerkinsKronologi singel Down(2009) Do You Remember I Made It (Cash Money Heroes)(2010) Hold My Hand(2009) Do Y...

 

Governing body of association football in Paraguay Paraguayan Football AssociationCONMEBOLFounded1906; 117 years ago (1906)HeadquartersLuqueLocation1 Medallistas Olímpicos, Parque Olímpico, LuqueFIFA affiliation1925CONMEBOL affiliation1921PresidentRobert Harrison[1]General SecretaryLuis KanonnikoffWebsiteapf.org.py The Paraguayan Football Association (Spanish: Asociación Paraguaya de Futbol [asosjaˈsjom paɾaˈɣwaʝa ðe ˈfuðβol]; APF) (Guarani: Parag...

 

2021 video gameThe Great Ace Attorney ChroniclesNorth American box artDeveloper(s)CapcomPublisher(s)CapcomDirector(s)Shu TakumiProducer(s)Shintaro KojimaMotohide EshiroComposer(s)Yasumasa KitagawaHiromitsu MaebaYoshiya TerayamaSeriesAce AttorneyEngineMT FrameworkPlatform(s)Nintendo SwitchPlayStation 4WindowsReleaseWW: July 27, 2021JP: July 29, 2021Genre(s)Adventure, visual novelMode(s)Single-player The Great Ace Attorney Chronicles is a compilation video game of both games in the Ace Attorney...

Михайло Вуяхевич-Височинський Михайло Вуяхевич-Височинський Герб Корчак Прапор Генеральний писар 1661 — 18 (28) червня 1663 Наступник: Степан Гречаний (у генеральній старшині Якима Сомка) 1668 — 1676 (у генеральній старшині Петра Дорошенка) Прапор Генеральний суддя 1687 — лютий 1691 (...

 

Adršpach Adršpach (Tschechien) Basisdaten Staat: Tschechien Tschechien Historischer Landesteil: Böhmen Region: Královéhradecký kraj Bezirk: Náchod Fläche: 1972[1] ha Geographische Lage: 50° 37′ N, 16° 7′ O50.62305555555616.114444444444554Koordinaten: 50° 37′ 23″ N, 16° 6′ 52″ O Höhe: 554 m n.m. Einwohner: 495 (1. Jan. 2023)[2] Postleitzahl: 549 52 Kfz-Kennzeichen: H Verkehr Straße: Chval...

 

Village and civil parish in South Yorkshire, England Human settlement in EnglandWickersleySt Alban's ChurchWickersleyLocation within South YorkshirePopulation7,392 (2011)OS grid referenceSK480916• London135 mi (217 km) SSECivil parishWickersleyMetropolitan boroughRotherhamMetropolitan countySouth YorkshireRegionYorkshire and the HumberCountryEnglandSovereign stateUnited KingdomPost townROTHERHAMPostcode districtS66Dialling code0170...

Incidente di VermicinoAlfredo Rampi TipoIncidente Data inizio10 giugno 198119:20 Data fine13 giugno 19815:00 LuogoVia Sant'Ireneo, tra Vermicino e Selvotta Stato Italia Regione Lazio Provincia Roma ComuneFrascati Coordinate41°50′53.71″N 12°39′57.6″E / 41.848253°N 12.666001°E41.848253; 12.666001Coordinate: 41°50′53.71″N 12°39′57.6″E / 41.848253°N 12.666001°E41.848253; 12.666001 Causainosservanza delle norme di sicurezza per...

 

2017 Italian filmUgly Nasty PeopleFilm posterItalianBrutti e cattivi Directed byCosimo GomezWritten byLuca InfascelliCosimo GomezProduced byLuca BarbareschiStarringClaudio SantamariaMarco D'AmoreSara SerraioccoCinematographyVittorio Omodei ZoriniEdited byMauro BonanniDistributed by01 DistributionRelease date 19 October 2017 (2017-10-19) (Italy) Running time87 minutesCountryItalyLanguageItalian Ugly Nasty People (Italian: Brutti e cattivi) is a 2017 Italian heist comedy film...

 

The Guardian First editionAuthorNicholas SparksCountryUnited StatesLanguageEnglishGenreNovelPublisherWarner BooksPublication date2003Media typePrint (hardcover)Pages489 ppISBN978-0-446-69611-1Preceded byNights in Rodanthe Followed byThe Wedding  The Guardian is the seventh novel by the American writer Nicholas Sparks. The book is about a Great Dane named Singer who is the pet of a widow named Julie who is trying to find a new life partner. Among those she considers ar...

Kabupaten Kolaka TimurKabupaten BenderaLambangJulukan: Wonua SorumeMotto: “Inae Konasara Iye Pinesara Inae Liasara Iye Pinekasara”PetaKabupaten Kolaka TimurPetaTampilkan peta SulawesiKabupaten Kolaka TimurKabupaten Kolaka Timur (Indonesia)Tampilkan peta IndonesiaKoordinat: 4°01′05″S 121°51′42″E / 4.01807°S 121.86172°E / -4.01807; 121.86172Negara IndonesiaProvinsiSulawesi TenggaraTanggal berdiri11 Januari 2013Dasar hukumUU No.8 tahun 2013H...

 

Mohawk Sports Park, is a large park on the east mountain of Hamilton, Ontario, 1100 Mohawk Road East, also known as Commonwealth Park and Upper King's Forest Park.[1][2] Facilities A number of sporting venues including: an 8 lane dedicated competition track and field facility 7 baseball fields including Bernie Arbour Memorial Stadium Mohawk 4 Ice Centre, (4 rinks) See also List of sports venues in Hamilton, Ontario References ^ Map of Slow-Pitch Parks in Hamilton. Retrieved 20...

 

Bisdommen in Botswana De Katholieke Kerk in Botswana is een onderdeel van de wereldwijde Rooms-Katholieke Kerk, onder het geestelijk leiderschap van de paus en de curie in Rome. In 2005 waren ongeveer 80.000 (4,5%) van de 1.800.000 inwoners van Botswana lid van de Katholieke Kerk.[1] Het land is opgedeeld in twee kerkelijke regios, het bisdom Gaborone en het bisdom Francistown, die onder de kerkprovincie Pretoria vallen. De bisschoppen van Botswana zijn lid van de bisschoppenconferent...

Albanian politician and lawyer Tefik MborjaBornTefik Selim Mborja6 November 1891Mborje, Vilayet of Monastir, Ottoman EmpireDied1 July 1954 (aged 62)NationalityAlbanianOccupation(s)Politician, diplomatKnown forAlbanian Fascist PartySignature Tefik Selim Mborja (6 November 1891 – 1 July 1954) was an Albanian politician and lawyer. He served as the general secretary of the Albanian Fascist Party during the Second World War.[1] Biography Tefik Mborja was born in 1888, in Mborje, Vi...

 

Museu da Imagem e do Som Museu da Imagem e do Som (São Paulo) Tipo museu Inauguração 1970 (53 anos) Administração Diretor(a) Cleber Papa Página oficial (Website) Geografia Coordenadas 23° 34' 21.418 S 46° 40' 34.255 O Localidade São Paulo Localização São Paulo - Brasil [edite no Wikidata] O Museu da Imagem e do Som (MIS) é um museu público estadual, vinculado à Secretaria da Cultura e inaugurado no ano de 1970.[1] Fruto de um projeto iniciado alguns...

 

Questa voce è orfana, ovvero priva di collegamenti in entrata da altre voci. Inseriscine almeno uno pertinente e utile e rimuovi l'avviso. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento calciatori cechi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Josef Hnaníček Nazionalità  Rep. Ceca Altezza 183 cm Peso 76 kg Calcio Ruolo Difensore Squadra  Příbram Carri...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) قرية اسفل مغلان  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة أبين المديرية مديرية رصد ...

 

This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (January 2021) Movement to reduce hunger No Food WasteFounded16 October 2014 (2014-10-16)FounderPadmanaban Gopalan, Dinesh Manickam and Sudhakar MohanFounded atCoimbatoreTypeNGOHeadquartersCoimbatoreLocationIndiaWebsitenofoodwaste.org No Food Waste (NFW)&#...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!