List of metal-organic chemical vapour deposition precursors
In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile, can now be grown by MOCVD. This includes metals and different multi-component materials such as semiconductor and intermetallic compounds as well as carbides, nitrides, oxides, borides, silicides and chalcogenides. Further significant advantages of MOCVD over physical processes are a capability for large scale production, an easier automation, a good conformal coverage, the selectivity and the ability to produce metastable materials.[1]
Thus, much effort has been aimed at the synthesis of new molecular precursors. A productive overview is provided by several exceptional reviews covering fields of MOCVD such as, for instance, epitaxial growth of semiconductor compounds,[2][3][4] and low temperature deposition of metals.[5][6] An overview of metal-organic compounds used for the MOCVD growth of different kind of materials is reported in the following reviews.[7][8][9]
This is a list of prominent precursor complexes synthesized thus far with suited properties to be utilized for MOCVD processes.
Decomposes at low pressure and room temperatures,[1] stable under N2 or Ar in sealed contanier and decomposes slowly in contact with moist air and rapidly in contact with water.
Above 215 °C under high vacuum it decomposes to form ketenes and carbanions [1]
268-270 °C (atmospehric pressure)
NA
265-268 °C
Soluble in water
[1] D. Saulys, V. Joshkin, M. Khoudiakov, T.F. Kuech, A.B. Ellis, S.R. Oktyabrsky, L. McCaughan, Journal of Crystal Growth 217 (2000) 287-301
"Sensitive to moisture and reacts with water. Material decomposes slowly in contact with moist air and rapidly in contact with water, possibly igniting. Avoid contact with moist air, water, acids, alcohols, ketones, esters, carbon dioxide, halogens."
Highly flammable, stable under nitrogen or argon in sealed containers
Stable to light, heat, air, carbon dioxide and strong acids. Moisture sentitive, vigorous reaction to water.
108-115 °C [1,2]
283 °C
Soluble in toluene, hexane, tetrahydrofuran and methyl tert-butyl ether.
"[1] A. Dabirian, Y. Kuzminykh, S. C. Sandu, S. Harada, E. Wagner, P. Brodard, G. Benvenuti, S.Rushworth, P. Muralt, P. Hoffmann, Cryst. Growth Des. 2011, 1, 203.[2] A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, J. Cryst. Growth 1995, 148, 324.[3] J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).[4] Sigma-Aldtritch"
LiTa(OEt)6
127503-04-2
The double alkoxides have sufficient stability using parent alcohol as solvent. Decomposes in contact with water.
The thermal stability and volatility vary with respect to the reaction in solid or liquid state.
Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Sodium cyclopentadienide, C5H5Na
4984-82-1
In contact with water releases flammable gases which may ignite spontaneously.
It decomposes at 2 stages namely around 90 °C and 140 °C
D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium-niobium hexakis(isopropoxide), NaNb(OiPr)6
110-120/0.1
Sodium bis(n-propyldimethylsilyl)amide
213/0.3
Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(i-butyldimethylsilyl)amide
189/0.08
Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-butyldimethylsilyl)amide
231/0.5
Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-hexyldimethylsill)amide
265/0.3
Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium Tert Butoxide, NaOC(CH3)3
865-48-5
Stable at room temperature. Decomposes at 300 °C; stable under N2 or Ar in sealed container and decomposes slowly in contact with moist air and violently in contact with water.[1]
"• 30 g/L at 20 °C Medium: tert-butyl alcohol • 70 g/L at 20 °C Medium: Toluene • 130 g/L at 20 °C Medium: Hexane • 380 g/L at 20 °C Medium: Tetrahydrofuran • 50 g/L at 20 °C Medium: xylene • 110 g/L at 20 °C Medium: octane • 220 g/L at 20 °C Medium: Diethyl ether • 450 g/L at 20 °C Medium: Dimethylformamide
Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Potassium tert-butoxide (KOtBu) C4H9KO
865-47-4
Sublimes at temperature of 220 °C at pressure of 1 Torr [1]
1. Onoe, A., Tasaki, Y., & Chikuma, K. (2005). Anomalous evaporation characteristics of vitrificated K(DPM) and stable gas supply using disk-shaped K(DPM) precursors for metalorganic chemical vapor deposition. Journal of Crystal Growth, 277(1-4), 546–554. doi:10.1016/j.jcrysgro.2005.01.077 2. www.molbase.com
Evaporation occurs in the 120–200 _C temperature range, with about 2%residue at 350 _C (Atm under N2)"
120–200 °C (Atm pressure under N2)
106,7°C
[3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tta)2tmeda
evaporated quantitatively in the 200–330 _C range, with less than 2% residue le at 350_°C. (Atm under N2)
2774(2) A˚ 3, Z = 4, Dc = 1.478 g cm−3
147–149°C
to request
to request
[3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Under atmospheric pressure and inert atmosphere Li(thd) evaporates completely before ≈270 °C without decomposition. Heating of Nb(thd)4 under similar
conditions results in a solid residue of ≈7% what shows that evaporation and decomposition of this compound goes simultaneously (full decomposition of Nb(thd)4 to Nb2O5 should leave 16.1% residue).[1]
219-220 °C
1,2-dimethoxyethane
[1] S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 2013, 8626, 862612.
[1] Y. Sakashita, H. Segawa, J. Appl. Phys. 1995, 77, 5995 [2] Y. Akiyama, K. Shitanaka, H. Murakami, Y. S. Shin, M. Yoshida, N. Imaishi, Thin Solid Films
Vikulova, E. S., Zherikova, K. V., Zelenina, L. N., Trubin, S. V., Sysoev, S. V., Semyannikov, Asanov I. V., Morozova N. B., Igumenov, I. K., J. Chem. Thermodynamics 69 (2014) 137–144
[i] C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 [ii] J. H. Burns, M. D. Danford, Inorg. Chem., 1969, 8 (8), pp 1780–1784, doi:10.1021/ic50078a048,
Rubidium acetylacetonate RbC5H7O2
66169-93-5
melting point: 200 °C
C.R. Bhattacharjee, M. Bhattacharjee; M.K. Chaudhuri, H. Sangchungnunga, J. Chem. Res. Synopses, 1991, no9, pp. 250–251
Simon C. Thompson, David J. Cole-hamilton, Douglas D. Gilliland, Michael L. Hitchman, John C. Barnes, Advanced Materials for Optics and Electronics, Volume 1, Issue 2, pages 81–97, April 1992
Calcium bis(tert-butyl)dimethylketiminate
El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Calcium bis(isopropyl)dimethylketiminate
El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Van Elshocht, S., Lehnen, P., Seitzinger, B., Abrutis, A., Adelmann, C., Brijs, B., ... Heyns, M., Journal of The Electrochemical Society, 153(9), 2006
^ abFischer, Roland A. (2 June 1995). "The chemistry of metal CVD. Herausgegeben vonT. T. Kodas undM. J. Hampden-Smith. VCH Verlagsgesellschaft, Weinheim, 1994. 538 S., geb. 228.00 DM. – ISBN 3-527-29071-0". Angewandte Chemie. 107 (11): 1366–1367. Bibcode:1995AngCh.107.1366F. doi:10.1002/ange.19951071132.
^ abVahlas, Constantin (February 2010). "Chemical vapor deposition of metals: From unary systems to complex metallic alloys". In Esther Belin-Ferré (ed.). Surface Properties and Engineering of Complex Intermetallics. Book Series on Complex Metallic Alloys. Vol. 3. pp. 49–81. Bibcode:2010spec.book.....B. doi:10.1142/7733. ISBN9789814304771.
^ abDevi, Anjana (December 2013). "'Old Chemistries' for new applications: Perspectives for development of precursors for MOCVD and ALD applications". Coordination Chemistry Reviews. 257 (23–24): 3332–3384. doi:10.1016/j.ccr.2013.07.025.
^Condorelli, Guglielmo G.; Malandrino, Graziella; Fragalà, Ignazio L. (July 2007). "Engineering of molecular architectures of β-diketonate precursors toward new advanced materials". Coordination Chemistry Reviews. 251 (13–14): 1931–1950. doi:10.1016/j.ccr.2007.04.016.
^Malandrino, Graziella; Fragalà, Ignazio L. (June 2006). "Lanthanide "second-generation" precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties". Coordination Chemistry Reviews. 250 (11–12): 1605–1620. doi:10.1016/j.ccr.2006.03.017.
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!