Linear–quadratic regulator

The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.

LQR controllers possess inherent robustness with guaranteed gain and phase margin,[1] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem. Like the LQR problem itself, the LQG problem is one of the most fundamental problems in control theory.[2]

General description

The settings of a (regulating) controller governing either a machine or process (like an airplane or chemical reactor) are found by using a mathematical algorithm that minimizes a cost function with weighting factors supplied by the operator. The cost function is often defined as a sum of the deviations of key measurements, like altitude or process temperature, from their desired values. The algorithm thus finds those controller settings that minimize undesired deviations. The magnitude of the control action itself may also be included in the cost function.

The LQR algorithm reduces the amount of work done by the control systems engineer to optimize the controller. However, the engineer still needs to specify the cost function parameters, and compare the results with the specified design goals. Often this means that controller construction will be an iterative process in which the engineer judges the "optimal" controllers produced through simulation and then adjusts the parameters to produce a controller more consistent with design goals.

The LQR algorithm is essentially an automated way of finding an appropriate state-feedback controller. As such, it is not uncommon for control engineers to prefer alternative methods, like full state feedback, also known as pole placement, in which there is a clearer relationship between controller parameters and controller behavior. Difficulty in finding the right weighting factors limits the application of the LQR based controller synthesis.

Versions

Finite-horizon, continuous-time

For a continuous-time linear system, defined on , described by:

where (that is, is an -dimensional real-valued vector) is the state of the system and is the control input. Given a quadratic cost function for the system, defined as:


where is the initial cost matrix, is the state cost matrix, is the control cost matrix, and is the cross-term (control and state) cost matrix, the feedback control law that minimizes the value of the cost is:

where is given by:

and is found by solving the continuous time Riccati differential equation:

with the boundary condition:

The first order conditions for Jmin are:

1) State equation

2) Co-state equation

3) Stationary equation

4) Boundary conditions

and

Infinite-horizon, continuous-time

For a continuous-time linear system described by:

with a cost function defined as:

the feedback control law that minimizes the value of the cost is:

where is given by:

and is found by solving the continuous time algebraic Riccati equation:

This can be also written as:

with

Finite-horizon, discrete-time

For a discrete-time linear system described by: [3]

with a performance index defined as:

, where is the time horizon

the optimal control sequence minimizing the performance index is given by:

where:

and is found iteratively backwards in time by the dynamic Riccati equation:

from terminal condition .[4] Note that is not defined, since is driven to its final state by .

Infinite-horizon, discrete-time

For a discrete-time linear system described by:

with a performance index defined as:

the optimal control sequence minimizing the performance index is given by:

where:

and is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

.

This can be also written as:

with:

.

Note that one way to solve the algebraic Riccati equation is by iterating the dynamic Riccati equation of the finite-horizon case until it converges.

Constraints

In practice, not all values of may be allowed. One common constraint is the linear one:

The finite horizon version of this is a convex optimization problem, and so the problem is often solved repeatedly with a receding horizon. This is a form of model predictive control.[5][6]

Quadratic-quadratic regulator

If the state equation is quadratic then the problem is known as the quadratic-quadratic regulator (QQR). The Al'Brekht algorithm can be applied to reduce this problem to one that can be solved efficiently using tensor based linear solvers.[7]

Polynomial-quadratic regulator

If the state equation is polynomial then the problem is known as the polynomial-quadratic regulator (PQR). Again, the Al'Brekht algorithm can be applied to reduce this problem to a large linear one which can be solved with a generalization of the Bartels-Stewart algorithm; this is feasible provided that the degree of the polynomial is not too high.[8]

Model-predictive control

Model predictive control and linear-quadratic regulators are two types of optimal control methods that have distinct approaches for setting the optimization costs. In particular, when the LQR is run repeatedly with a receding horizon, it becomes a form of model predictive control (MPC). In general, however, MPC does not rely on any assumptions regarding linearity of the system.

References

  1. ^ Lehtomaki, N.; Sandell, N.; Athans, M. (1981). "Robustness results in linear-quadratic Gaussian based multivariable control designs". IEEE Transactions on Automatic Control. 26 (1): 75–93. doi:10.1109/TAC.1981.1102565. ISSN 0018-9286.
  2. ^ Doyle, John C. (1978). "Guaranteed Margins for LQG Regulators" (PDF). IEEE Transactions on Automatic Control. 23 (4): 756–757. doi:10.1109/TAC.1978.1101812. ISSN 0018-9286.
  3. ^ Chow, Gregory C. (1986). Analysis and Control of Dynamic Economic Systems. Krieger Publ. Co. ISBN 0-89874-969-7.
  4. ^ Shaiju, AJ, Petersen, Ian R. (2008). "Formulas for discrete time LQR, LQG, LEQG and minimax LQG optimal control problems". IFAC Proceedings Volumes. 41 (2). Elsevier: 8773–8778. doi:10.3182/20080706-5-KR-1001.01483.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ "Ch. 8 - Linear Quadratic Regulators". underactuated.mit.edu. Retrieved 20 August 2022.
  6. ^ Scokaert, Pierre O. M.; Rawlings, James B. (August 1998). "Constrained Linear Quadratic Regulation" (PDF). IEEE Transactions on Automatic Control. 43 (8): 1163–1169. doi:10.1109/9.704994. hdl:1793/10888. Retrieved 20 August 2022.
  7. ^ Borggaard, Jeff; Zietsman, Lizette (July 2020). "The Quadratic-Quadratic Regulator Problem: Approximating feedback controls for quadratic-in-state nonlinear systems". 2020 American Control Conference (ACC). pp. 818–823. arXiv:1910.03396. doi:10.23919/ACC45564.2020.9147286. ISBN 978-1-5386-8266-1. S2CID 203904925. Retrieved 20 August 2022.
  8. ^ Borggaard, Jeff; Zietsman, Lizette (1 January 2021). "On Approximating Polynomial-Quadratic Regulator Problems". IFAC-PapersOnLine. 54 (9): 329–334. arXiv:2009.11068. doi:10.1016/j.ifacol.2021.06.090. S2CID 221856517.
  • Kwakernaak, Huibert; Sivan, Raphael (1972). Linear Optimal Control Systems (1st ed.). Wiley-Interscience. ISBN 0-471-51110-2.
  • Sontag, Eduardo (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd ed.). Springer. ISBN 0-387-98489-5.

Read other articles:

Angels and Visitations Hardback edition coverAuthorNeil GaimanIllustratorsVariousCountryUnited StatesLanguageEnglishGenreShort story collectionPublisherDreamHaven BooksPublication date1993Media typePrintPages166 ppISBN978-0-9630-9442-1OCLC29489554 Angels and Visitations is a collection of short fiction and nonfiction by Neil Gaiman. It was first published in the United States in 1993 by DreamHaven Books. It is illustrated by Steve Bissette, Randy Broecker, Dave McKean, P. Craig Russell, ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) علامة مرور، في الطريق السريع 70 في ولاية كولورادو الأمريكية، تشير عادة إلى وجود محطة وزن محورية قادمة، مع الإشارة إلى ما إذا كانت مفتوحة. محطة الوزن المحورية&#...

 

موريس ميخائيل إدلستاين (بالإنجليزية: Morris Michael Edelstein)‏    معلومات شخصية الميلاد 5 فبراير 1888  ميتسيرزيك بودلاسكي  الوفاة 4 يونيو 1941 (53 سنة)   واشنطن  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم كلية كوبر يونيون لتقدم العلوم والفنونكلية بروكلين للحقوق&...

Vito Volterra Vito Volterra (Ancona, 3 mei 1860 – Rome, 11 oktober 1940) was een Italiaanse wiskundige en natuurkundige die vooral bekend is door zijn bijdragen aan de theorie van integraalvergelijkingen en aan de wiskundige biologie (het prooi-roofdiermodel met de Volterra-Lotka-vergelijking). Jeugd Volterra groeide op in een zeer arme joodse familie. Met zijn talent voor wiskunde hield hij zich op 13-jarige leeftijd bezig met het drielichamenprobleem. Hij ging vervolgens naar de Universit...

 

Voce principale: Campionati del mondo Ironman. Campionati del mondo Ironman del 1980 Competizione Campionati del mondo Ironman Sport Ironman Edizione 3° Organizzatore WTC - World Triathlon Corporation Date 1980 Luogo  Stati Uniti, Isola di Oahu Sito web GBRathletics.com Risultati Vincitore Dave Scott Robin Beck Cronologia della competizione 1979 1981 Manuale I Campionati del mondo Ironman del 1980 hanno visto trionfare tra gli uomini lo statunitense Dave Scott, davanti ai connazionali C...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Aloysius SuwardiLahir(1951-06-21)21 Juni 1951Sukoharjo, Jawa TengahPekerjaanMusikusTahun aktif1974 - sekarang Aloysius Suwardi (lahir 21 Juni 1951) adalah musikus berkebangsaan Indonesia. Bidang yang digeluti dia adalah etnomusikologi, utamanya karawi...

هذا الوسيط قد لا يتقبله البعض. فرج مُثار على اليمين، وفرج غير مُثار على اليساررابط للوسيط الانتصاب البظري[1] هو ظاهرة فسيولوجية حيث يزداد حجم البظر ويصبح ثابتًا. انتصاب البظر ما هو إلا نتيجة لتفاعل معقد للعديد من العوامل النفسية والعصبية والأوعية الدموية والغدد الصماء،

 

Dominic Calvert-Lewin Calvert-Lewin, 2017Informasi pribadiNama lengkap Dominic Nathaniel Calvert-Lewin[1]Tanggal lahir 16 Maret 1997 (umur 26)[2]Tempat lahir Sheffield, InggrisTinggi 614 kaki (187 m)[3]Posisi bermain PenyerangInformasi klubKlub saat ini EvertonNomor 9Karier junior2005–2014 Sheffield UnitedKarier senior*Tahun Tim Tampil (Gol)2014–2016 Sheffield United 11 (0)2014–2015 → Stalybridge Celtic (pinjam) 5 (6)2015–2016 → Northampton Town (...

 

ميا شعريم מאה שערים أحد شوارع حي ميا شعريم الإحداثيات 31°47′13″N 35°13′20″E / 31.786944444444°N 35.222222222222°E / 31.786944444444; 35.222222222222  تاريخ التأسيس 1874 أسسها مئير أورباخ، ويوسف ريفلين تقسيم إداري  البلد إسرائيل  التقسيم الأعلى القدس  تعديل مصدري - تعديل   ميا شعريم أو م...

2 Tawarikh 32Kitab Tawarikh (Kitab 1 & 2 Tawarikh) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 TawarikhKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen14← pasal 31 pasal 33 → 2 Tawarikh 32 (atau II Tawarikh 32, disingkat 2Taw 32) adalah bagian dari Kitab 2 Tawarikh dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk dalam bagian Ketuvim (כְּתוּבִים, tulisan).[1][2] T...

 

Technique to film night scenes in daylight This article is about the movie technique. For other uses, see Day for night (disambiguation). Though shot during the day, a scene can be made to appear as if it takes place at night. Day for night is a set of cinematic techniques used to simulate a night scene while filming in daylight. It is often employed when it is too difficult or expensive to actually shoot during nighttime. Because both film stocks and digital image sensors lack the sensitivit...

 

Moshi Moshi, Terumi DesuCover of Moshi Moshi, Terumi Desu volume 1 by Shogakukanもしもし、てるみです。GenreRomantic comedy[1] MangaWritten byEtsuko MizusawaPublished byShogakukanMagazineBig Comic SpiritsDemographicSeinenOriginal runMarch 2016 – February 2018Volumes2 Original net animationStudioProduction I.GReleasedJune 8, 2018 Moshi Moshi, Terumi Desu (もしもし、てるみです。, lit. Hello, This is Terumi) is a Japanese manga series by Etsuko Mizusawa. ...

Координати: 37°06′36″ пн. ш. 85°16′48″ зх. д. / 37.11000000002777455° пн. ш. 85.28000000002778336° зх. д. / 37.11000000002777455; -85.28000000002778336 Округ Адер, Кентуккі На мапі штату Кентуккі Розташування штату Кентуккі на мапі США Заснований 1801 Центр Коламбія Найбільше місто Кола...

 

1961 film directed by Ishirō Honda This article is about the 1961 film. For the 1996 film released in Japan as Mothra, see Rebirth of Mothra. For the Godzilla character, see Mothra. MothraTheatrical release posterJapanese nameKanjiモスラTranscriptionsRevised HepburnMosura Directed byIshirō HondaScreenplay byShinichi Sekizawa[1]Based onThe Glowing Fairies and Mothraby Shin'ichirō Nakamura, Takehiko Fukunaga, Yoshie Hotta[2]Produced byTomoyuki Tanaka[1]Starring Fra...

 

Linear feature on the ocean floor Approximate surface projection on oceans of named fracture zones (orange). Also shown are relevant present plate boundaries (white) and associated features (lighter orange). Click to expand to interactive map.[1] Oceanic crust age differences and ridge-ridge transform faulting associated with offset mid-ocean ridge segments lead to the formation of fracture zones. A fracture zone is a linear feature on the ocean floor—often hundreds, even thousands ...

Division of NBCUniversal NBC Sports GroupTypeDivisionIndustryTelevisionFounded2011 (2011)HeadquartersStamford, Connecticut, United StatesKey peoplePete Bevacqua (chairman)OwnerNBCUniversal(Comcast)ParentNBCUniversal Media GroupDivisionsGolf ChannelTelemundo DeportesNBC SportsNBC Sports DigitalNBC Sports FilmsNBC Sports RadioNBC Sports Regional NetworksSubsidiariesNBC Olympics LLCNBC Sports Ventures LLCWebsitenbcsportsgrouppressbox.com NBC Sports Group is a division of NBCUniversal that i...

 

Town in the state of Utah, United States City in Utah, United StatesManila, UtahCityLocation in Daggett County and the state of UtahLocation of Utah in the United StatesCoordinates: 40°59′33″N 109°43′10″W / 40.99250°N 109.71944°W / 40.99250; -109.71944CountryUnited StatesStateUtahCountyDaggettFounded1898Incorporated1936Named forManila[1]Government • MayorKathi Knight [1]Area[2] • Total1.03 sq mi (2.68 k...

 

Proposed Menai Strait bridge in Wales Third Menai CrossingPreferred location of the crossing in 2018, before cancellationLocationMenai Strait, WalesProject websitegov.wales/a55-3rd-menai-crossing-0StatusScrapped (2023), replaced with transport strategy reviewTypeDual-carriageway road bridgeCost estimate£400 million (2022)Start datecancelled The Third Menai Crossing (or (A55) 3rd Menai Crossing) was a proposed bridge over the Menai Strait, connecting the Isle of Anglesey with mainland Wales. ...

Indian TV series or programme Ponnukku Thanga ManasuGenreSoap operaCreated byChitra ShenoyBased onSthreedhanamWritten byPradeep Manikkar R. Ramesh Babu Joyci Pradeep SethuDirected byHarrisonStarring Vindhuja Vikraman Ashwin Chitra Shenoy Swathi Tara Theme music composerIlaivayanCountry of originIndiaOriginal languageTamilNo. of seasons1No. of episodes559ProductionCinematographyMartin JoeEditorS.Mathan kumarCamera setupMulti-cameraRunning timeapprox. 20–24 minutes per episodeProduction ...

 

Swedish investment bank Carnegie Investment BankTypePrivately held companyIndustryBankingFinancial servicesFounded1803FounderDavid Carnegie, Sr.HeadquartersStockholm, SwedenKey peopleAnders Johnsson, ChairmanBjörn Jansson, CEOProductsInvestment bankingBrokerageEquity researchWealth managementAUMSEK 166 billion (2020) [1]Number of employees600 (2Q 2019)Websitewww.carnegie.se Carnegie Investment Bank AB is a Swedish financial services group with activities in securities brokerage, inve...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!