The limbic system, also known as the paleomammalian cortex, is a set of brain structures located on both sides of the thalamus, immediately beneath the medial temporal lobe of the cerebrum primarily in the forebrain.[1]
The limbic system was originally defined by Paul Broca as a series of cortical structures surrounding the boundary between the cerebral hemispheres and the brainstem. The name "limbic" comes from the Latin word for the border, limbus, and these structures were known together as the limbic lobe.[6] Further studies began to associate these areas with emotional and motivational processes and linked them to subcortical components that were then grouped into the limbic system.[7]
In recent years, multiple additional limbic fiber connectivity has been revealed using difusion-weighted imaging MRI techniques. The equivalent fiber connectivity of all these pathways has been documented by dissection studies in primates. Some of these fiber tracts include the amygdalofugal tract, amygdalothalamic tract, stria terminalis, dorsal thalamo-hypothalamic tract, cerebellohypothalamic tracts, and the parieto-occipito-hypothalamic tract.[8]
Currently, it is not considered an isolated entity responsible for the neurological regulation of emotion, but rather one of the many parts of the brain that regulate visceral autonomic processes.[9] Therefore, the set of anatomical structures considered part of the limbic system is controversial. The following structures are, or have been considered, part of the limbic system:[10][11]
The structures and interacting areas of the limbic system are involved in motivation, emotion, learning, and memory. The limbic system is where the subcortical structures meet the cerebral cortex.[1] The limbic system operates by influencing the endocrine system and the autonomic nervous system. It is highly interconnected with the nucleus accumbens, which plays a role in sexual arousal and the "high" derived from certain recreational drugs. These responses are heavily modulated by dopaminergic projections from the limbic system. In 1954, Olds and Milner found that rats with metal electrodes implanted into their nucleus accumbens, as well as their septal nuclei, repeatedly pressed a lever activating this region.[12]
The limbic system also interacts with the basal ganglia. The basal ganglia are a set of subcortical structures that direct intentional movements. The basal ganglia are located near the thalamus and hypothalamus. They receive input from the cerebral cortex, which sends outputs to the motor centers in the brain stem. A part of the basal ganglia called the striatum controls posture and movement. Recent studies indicate that if there is an inadequate supply of dopamine in the striatum, this can lead to the symptoms of Parkinson's disease.[1]
The limbic system is also tightly connected to the prefrontal cortex. Some scientists contend that this connection is related to the pleasure obtained from solving problems.[citation needed] To cure severe emotional disorders, this connection was sometimes surgically severed, a procedure of psychosurgery, called a prefrontal lobotomy (this is actually a misnomer). Patients having undergone this procedure often became passive and lacked all motivation.[13]
The limbic system is often incorrectly classified as a cerebral structure,[citation needed] but simply interacts heavily with the cerebral cortex. These interactions are closely linked to olfaction, emotions, drives, autonomic regulation, memory, and pathologically to encephalopathy, epilepsy, psychotic symptoms, cognitive defects.[14] The functional relevance of the limbic system has proven to serve many different functions such as affects/emotions, memory, sensory processing, time perception, attention, consciousness, instincts, autonomic/vegetative control, and actions/motor behavior. Some of the disorders associated with the limbic system and its interacting components are epilepsy and schizophrenia.[15]
Hippocampus
The hippocampus is involved with various processes relating to cognition and is one of the best understood and heavily involved limbic interacting structure.
Spatial memory
The first and most widely researched area concerns memory, particularly spatial memory. Spatial memory was found to have many sub-regions in the hippocampus, such as the dentate gyrus (DG) in the dorsal hippocampus, the left hippocampus, and the parahippocampal region. The dorsal hippocampus was found to be an important component for the generation of new neurons, called adult-born granules (GC), in adolescence and adulthood.[16] These new neurons contribute to pattern separation in spatial memory, increasing the firing in cell networks, and overall causing stronger memory formations. This is thought to integrate spatial and episodic memories with the limbic system via a feedback loop that provides emotional context of a particular sensory input.[17]
While the dorsal hippocampus is involved in spatial memory formation, the left hippocampus is a participant in the recall of these spatial memories. Eichenbaum[18] and his team found, when studying the hippocampal lesions in rats, that the left hippocampus is "critical for effectively combining the 'what', 'when', and 'where' qualities of each experience to compose the retrieved memory". This makes the left hippocampus a key component in the retrieval of spatial memory. However, Spreng[19] found that the left hippocampus is a general concentrated region for binding together bits and pieces of memory composed not only by the hippocampus, but also by other areas of the brain to be recalled at a later time. Eichenbaum's research in 2007 also demonstrates that the parahippocampal area of the hippocampus is another specialized region for the retrieval of memories just like the left hippocampus.[citation needed]
Learning
The hippocampus, over the decades, has also been found to have a huge impact in learning. Curlik and Shors[20] examined the effects of neurogenesis in the hippocampus and its effects on learning. This researcher and his team employed many different types of mental and physical training on their subjects, and found that the hippocampus is highly responsive to these latter tasks. Thus, they discovered an upsurge of new neurons and neural circuits in the hippocampus as a result of the training, causing an overall improvement in the learning of the task. This neurogenesis contributes to the creation of adult-born granules cells (GC), cells also described by Eichenbaum[18] in his own research on neurogenesis and its contributions to learning. The creation of these cells exhibited "enhanced excitability" in the dentate gyrus (DG) of the dorsal hippocampus, impacting the hippocampus and its contribution to the learning process.[18]
Hippocampus damage
Damage related to the hippocampal region of the brain has reported vast effects on overall cognitive functioning, particularly memory such as spatial memory. As previously mentioned, spatial memory is a cognitive function greatly intertwined with the hippocampus. While damage to the hippocampus may be a result of a brain injury or other injuries of that sort, researchers particularly investigated the effects that high emotional arousal and certain types of drugs had on the recall ability in this specific memory type. In particular, in a study performed by Parkard,[21] rats were given the task of correctly making their way through a maze. In the first condition, rats were stressed by shock or restraint which caused a high emotional arousal. When completing the maze task, these rats had an impaired effect on their hippocampal-dependent memory when compared to the control group. Then, in a second condition, a group of rats were injected with anxiogenic drugs. Like the former these results reported similar outcomes, in that hippocampal-memory was also impaired. Studies such as these reinforce the impact that the hippocampus has on memory processing, in particular the recall function of spatial memory. Furthermore, impairment to the hippocampus can occur from prolonged exposure to stress hormones such as glucocorticoids (GCs), which target the hippocampus and cause disruption in explicit memory.[22]
In an attempt to curtail life-threatening epileptic seizures, 27-year-old Henry Gustav Molaison underwent bilateral removal of almost all of his hippocampus in 1953. Over the course of fifty years he participated in thousands of tests and research projects that provided specific information on exactly what he had lost. Semantic and episodic events faded within minutes, having never reached his long-term memory, yet emotions, unconnected from the details of causation, were often retained. Dr. Suzanne Corkin, who worked with him for 46 years until his death, described the contribution of this tragic "experiment" in her 2013 book.[23]
Another integrative part of the limbic system, the amygdala, which is the deepest part of the limbic system, is involved in many cognitive processes and is largely considered the most primordial and vital part of the limbic system. Like the hippocampus, processes in the amygdala seem to impact memory; however, it is not spatial memory as in the hippocampus but the semantic division of episodic-autobiographical memory (EAM) networks. Markowitsch's[24] amygdala research shows it encodes, stores, and retrieves EAM memories. To delve deeper into these types of processes by the amygdala, Markowitsch[24] and his team provided extensive evidence through investigations that the "amygdala's main function is to charge cues so that mnemonic events of a specific emotional significance can be successfully searched within the appropriate neural nets and re-activated." These cues for emotional events created by the amygdala encompass the EAM networks previously mentioned.
Attentional and emotional processes
Besides memory, the amygdala also seems to be an important brain region involved in attentional and emotional processes. First, to define attention in cognitive terms, attention is the ability to focus on some stimuli while ignoring others. Thus, the amygdala seems to be an important structure in this ability.
Foremost, however, this structure was historically thought to be linked to fear, allowing the individual to take action in response to that fear. However, as time has gone by, researchers such as Pessoa,[25] generalized this concept with help from evidence of EEG recordings, and concluded that the amygdala helps an organism to define a stimulus and therefore respond accordingly. However, when the amygdala was initially thought to be linked to fear, this gave way for research in the amygdala for emotional processes. Kheirbek[16] demonstrated research that the amygdala is involved in emotional processes, in particular the ventral hippocampus. He described the ventral hippocampus as having a role in neurogenesis and the creation of adult-born granule cells (GC). These cells not only were a crucial part of neurogenesis and the strengthening of spatial memory and learning in the hippocampus but also appear to be an essential component to the function of the amygdala. A deficit of these cells, as Pessoa (2009) predicted in his studies, would result in low emotional functioning, leading to high retention rate of mental diseases, such as anxiety disorders.[citation needed]
Social processing
Social processing, specifically the evaluation of faces in social processing, is an area of cognition specific to the amygdala. In a study done by Todorov,[26] fMRI tasks were performed with participants to evaluate whether the amygdala was involved in the general evaluation of faces. After the study, Todorov concluded from his fMRI results that the amygdala did indeed play a key role in the general evaluation of faces. However, in a study performed by researchers Koscik[27] and his team, the trait of trustworthiness was particularly examined in the evaluation of faces. Koscik and his team demonstrated that the amygdala was involved in evaluating the trustworthiness of an individual. They investigated how brain damage to the amygdala played a role in trustworthiness, and found that individuals with damaged amygdalas tended to confuse trust and betrayal, and thus placed trust in those having done them wrong. Furthermore, Rule,[28] along with his colleagues, expanded on the idea of the amygdala in its critique of trustworthiness in others by performing a study in 2009 in which he examined the amygdala's role in evaluating general first impressions and relating them to real-world outcomes. Their study involved first impressions of CEOs. Rule demonstrated that while the amygdala did play a role in the evaluation of trustworthiness, as observed by Koscik in his own research two years later in 2011, the amygdala also played a generalized role in the overall evaluation of first impression of faces. This latter conclusion, along with Todorov's study on the amygdala's role in general evaluations of faces and Koscik's research on trustworthiness and the amygdala, further solidified evidence that the amygdala plays a role in overall social processing.
Based on experiments done on monkeys, the destruction of the temporal cortex almost always led to damage of the amygdala. This damage done to the amygdala led the physiologists Kluver and Bucy to pinpoint major changes in the behavior of the monkeys. The monkeys demonstrated the following changes:
The monkeys would no longer exhibit responses of fear or anger.[29]
The monkeys would inspect and physically touch all objects placed in front of them.[29]
The monkeys exhibited hypersexuality, demonstrating a sexual drive so strong that they would continuously stimulate their genitalia, copulate repeatedly and for long periods of time, and sometimes sustain small injuries in the process (e.g. due to excessive biting).[29]
This set of behavioral change came to be known as the Klüver–Bucy syndrome.
Evolutionary claims
Paul D. MacLean, as part of his triune brain theory (which is now considered outdated [citation needed][30][31]), hypothesized that the limbic system is older than other parts of the forebrain, and that it developed to manage circuitry attributed to the fight or flight first identified by Hans Selye[32] in his report of the General Adaptation Syndrome in 1936. It may be considered a part of survival adaptation in reptiles as well as mammals (including humans). MacLean postulated that the human brain has evolved three components, that evolved successively, with more recent components developing at the top/front. These components are, respectively:
The archipallium or primitive ("reptilian") brain, comprising the structures of the brain stem – medulla, pons, cerebellum, mesencephalon, the oldest basal nuclei – the globus pallidus and the olfactory bulbs.
The paleopallium or intermediate ("old mammalian") brain, comprising the structures of the limbic system.
The neopallium, also known as the superior or rational ("new mammalian") brain, comprises almost the whole of the hemispheres (made up of a more recent type of cortex, called neocortex) and some subcortical neuronal groups. It corresponds to the brain of the superior mammals, thus including the primates and, as a consequence, the human species. Similar development of the neocortex in mammalian species not closely related to humans and primates has also occurred, for example in cetaceans and elephants; thus the designation of "superior mammals" is not an evolutionary one, as it has occurred independently in different species.[dubious – discuss] The evolution of higher degrees of intelligence is an example of convergent evolution, and is also seen in non-mammals such as birds.[citation needed]
According to Maclean, each of the components, although connected with the others, retained "their peculiar types of intelligence, subjectivity, sense of time and space, memory, mobility and other less specific functions".
However, while the categorization into structures is reasonable, the recent studies of the limbic system of tetrapods, both living and extinct, have challenged several aspects of this hypothesis, notably the accuracy of the terms "reptilian" and "old mammalian". The common ancestors of reptiles and mammals had a well-developed limbic system in which the basic subdivisions and connections of the amygdalar nuclei were established.[33] Further, birds, which evolved from the dinosaurs, which in turn evolved separately but around the same time as the mammals, have a well-developed limbic system. While the anatomic structures of the limbic system are different in birds and mammals, there are functional equivalents.[citation needed]
History
Etymology and history
The term limbic comes from the Latinlimbus, for "border" or "edge", or, particularly in medical terminology, a border of an anatomical component. Paul Broca coined the term based on its physical location in the brain, sandwiched between two functionally different components.
The limbic system is a term that was introduced in 1949 by the American physician and neuroscientist, Paul D. MacLean.[34][35] The French physician Paul Broca first called this part of the brain le grand lobe limbique in 1878.[6] He examined the differentiation between deeply recessed cortical tissue and underlying, subcortical nuclei.[36] However, most of its putative role in emotion was developed only in 1937 when the American physician James Papez described his anatomical model of emotion, the Papez circuit.[37]
The first evidence that the limbic system was responsible for the cortical representation of emotions was discovered in 1939, by Heinrich Kluver and Paul Bucy. Kluver and Bucy, after much research, demonstrated that the bilateral removal of the temporal lobes in monkeys created an extreme behavioral syndrome. After performing a temporal lobectomy, the monkeys showed a decrease in aggression. The animals revealed a reduced threshold to visual stimuli, and were thus unable to recognize objects that were once familiar.[38] MacLean expanded these ideas to include additional structures in a more dispersed "limbic system", more on the lines of the system described above.[35] MacLean developed the theory of the "triune brain" to explain its evolution and to try to reconcile rational human behavior with its more "primal" and "violent" side. He became interested in the brain's control of emotion and behavior. After initial studies of brain activity in epileptic patients, he turned to cats, monkeys, and other models, using electrodes to stimulate different parts of the brain in conscious animals recording their responses.[39]
In the 1950s, he began to trace individual behaviors like aggression and sexual arousal to their physiological sources. He postulated the limbic system as the brain's center of emotions, including the hippocampus and amygdala. Developing observations made by Papez, he hypothesized that the limbic system had evolved in early mammals to control fight-or-flight responses and react to both emotionally pleasurable and painful sensations. The concept is now broadly accepted in neuroscience.[citation needed][40] Additionally, MacLean said that the idea of the limbic system leads to a recognition that its presence "represents the history of the evolution of mammals and their distinctive family way of life."[citation needed]
In the 1960s, Dr. MacLean enlarged his theory to address the human brain's overall structure and divided its evolution into three parts, an idea that he termed the triune brain. In addition to identifying the limbic system, he hypothesized a supposedly more primitive brain called the R-complex, related to reptiles, which controls basic functions like muscle movement and breathing. According to him, the third part, the neocortex, controls speech and reasoning and is the most recent evolutionary arrival.[41] The concept of the limbic system has since been further expanded and developed by Walle Nauta, Lennart Heimer, and others.[citation needed]
Academic dispute
There is controversy over the use of the term limbic system, with scientists such as Joseph E. LeDoux and Edmund Rolls arguing that the term be considered obsolete and abandoned.[42][43] Originally, the limbic system was believed to be the emotional center of the brain, with cognition being the business of the neocortex. However, cognition depends on acquisition and retention of memories, in which the hippocampus, a primary limbic interacting structure, is involved: hippocampus damage causes severe cognitive (memory) deficits. More important, the "boundaries" of the limbic system have been repeatedly redefined because of advances in neuroscience.[42] Therefore, while it is true that limbic interacting structures are more closely related to emotion, the limbic system itself is best thought of as a component of a larger emotional processing plant.[citation needed]
See also
Wikimedia Commons has media related to Limbic system.
^Catani, M; Dell'Acqua, F; Thiebaut De Schotten, M (2013). "A revised limbic system model for memory, emotion and behaviour". Neuroscience and Biobehavioral Reviews. 37 (8): 1724–37. doi:10.1016/j.neubiorev.2013.07.001. PMID23850593. S2CID28044712.
^ abBroca, P (1878). "Anatomie comparee des circonvolutions cerebrales: Le grand lobe limbique et la scissure limbique dans la serie des mammifères". Revue d'Anthropologie. 1: 385–498.
^Olds, J.; Milner, P. (1954). "Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain". J. Comp. Physiol. Psychol. 47 (6): 419–427. doi:10.1037/h0058775. PMID13233369.
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) لمعانٍ أخرى، طالع يونيون (توضيح). يونيون دي سانتا في تأسس عام 15 أبريل 1907 ...
Arctostaphylos Arctostaphylos viscidaTaxonomíaReino: PlantaeDivisión: MagnoliophytaClase: MagnoliopsidaSubclase: DilleniidaeOrden: EricalesFamilia: EricaceaeSubfamilia: ArbutoideaeGénero: ArctostaphylosAdans., 1763Especies Alrededor de 60, ver texto. Sinonimia Arctous [editar datos en Wikidata] El género Arctostaphylos, manzanita o gayubas son arbustos o árboles pequeños. Hay cerca de 60 especies que crecen cerca de las costas y en las montañas; con árboles pequeños ...
Oh Yong-su Información personalNacimiento 11 de febrero de 1914Ulsan (Corea del Sur) Fallecimiento 15 de mayo de 1979Gyeongsang del Sur (Corea del Sur) Nacionalidad Corea del SurLengua materna CoreanoEducaciónEducado en Kokugakuin University Información profesionalOcupación Novelista[editar datos en Wikidata] Oh Young-suHangul 오영수Hanja 吳永壽Romanización revisada O YeongsuMcCune-Reischauer O Yŏngsu[editar datos en Wikidata] Este nombre sigue la onomástica c...
Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad.Este aviso fue puesto el 5 de octubre de 2021. Sefirot Personaje de Final Fantasy Cosplayer interpretando al personaje.Primera aparición Final Fantasy VIIÚltima aparición Super Smash Bros. UltimateCausa/razón • Muerte definitivaCreado por Tetsuya NomuraVoz original Toshiyuki MorikawaDoblador en España Jaume Villanueva[1]Lugar de nacimiento Reactor Mako de NibelheimInform...
American actress (born 1971) Gena Lee NolinNolin in 2018Born (1971-11-29) November 29, 1971 (age 52)Duluth, Minnesota, U.S.OccupationsActressmodeltelevision personalityYears active1987–presentSpouses Greg Fahlman (m. 1993; div. 2001) Cale Hulse (m. 2004) Children3 Gena Lee Nolin (born November 29, 1971)[1] is an American actress. She is known for her television appearances on The Price Is Ri...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Signing ceremony – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) U.S. President George W. Bush signs a law in 2005 to place a statue of Rosa Parks at the U.S. Capitol. A signing ceremony is a ceremo...
Fictional aliens in The Marcross franchise This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zentradi – news · newspapers · books · scholar · JSTOR (August 2...
У Вікіпедії є статті про інших людей із прізвищем Лопатинський. Юрій Лопатинський поручник Карпатської Січі Підполковник Загальна інформаціяНародження 12 квітня 1906(1906-04-12)Тернопіль, Королівство Галичини та Володимирії, Австро-УгорщинаСмерть 16 листопада 1982(1982-11-16) ...
The initiator element (Inr), sometimes referred to as initiator motif, is a core promoter that is similar in function to the Pribnow box (in prokaryotes) or the TATA box (in eukaryotes). The Inr is the simplest functional promoter that is able to direct transcription initiation without a functional TATA box. It has the consensus sequence YYANWYY in humans.[a][1] Similarly to the TATA box, the Inr element facilitates the binding of transcription Factor II D (TFIID).[1] ...
ПамятникМемориальный ансамбль боевой славы «Вечный огонь» 49°48′37″ с. ш. 73°05′43″ в. д.HGЯO Страна Казахстан Город Караганда Скульптор Ж. Молдабаев Архитектор Н. Койшибеков Строительство 1975 Медиафайлы на Викискладе Мемориальный ансамбль боевой славы «Веч...
National ideology of Brunei, meaning Malay Islamic Monarchy This article is part of a series on thePolitics ofBrunei Sultan Hassanal Bolkiah Constitution Legislative Privy Prime Minister Hassanal Bolkiah Cabinet Ministry of Transport and Infocommunications Ministry of Culture, Youth and Sports Ministry of Defence Ministry of Development Ministry of Education Ministry of Finance and Economy Ministry of Foreign Affairs Ministry of Health Ministry of Home Affairs Ministry of Primary Resources an...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2023) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by cit...
German painter Portrait of Arno Holz, 1916 Erich Büttner (7 October 1889 – 12 September 1936) was a German painter. From 1906 to 1911 he studied at the Unterrichtsanstalt des Kunstgewerbemuseums Berlin. In 1908 he became a member of Berlin Secession. Works Büttner's work is dominated by color and dynamic form of expressionism. In the 1920s he created a series of portraits of his friends and fellow artists including Lovis Corinth, George Grosz, Arno Holz and Heinrich Zille. He produced...
Pour les articles homonymes, voir Arcisses. Arcisses De haut en bas, de gauche à droite : l'église Saint-Martin de Brunelles; l'église Saint-Aubin de Coudreceau; la mairie de Coudreceau; l'étang de Margon; l'église Notre-Dame du Mont Carmel de Margon. Administration Pays France Région Centre-Val de Loire Département Eure-et-Loir Arrondissement Nogent-le-Rotrou Intercommunalité Communauté de communes du Perche Maire Mandat Stéphane Courpotin 2020-2026 Code postal 28400 Code com...
Artemio Giovagnoni Artemio Giovagnoni (Perugia, 24 dicembre 1922 – Corciano, 5 settembre 2007) è stato uno scultore, medaglista, commediografo, scrittore e poeta italiano. Come scultore ha vinto numerosi premi e concorsi nazionali ed internazionali ed è considerato uno dei migliori medaglisti italiani. È stato accademico di merito dell'Accademia di Belle Arti Pietro Vannucci di Perugia, dove è stato allievo, docente e, infine, consigliere di amministrazione. È uno fra i più importanti...
64-gun ship of the line of the French Navy For other ships with the same name, see French ship Vengeur. History France NameVengeur [2] NamesakeAvenger OwnerFrench East India Company BuilderLorient, Caudan Laid downMay 1756[1] Launched25 October 1756[1] In serviceFebruary 1757 Out of service11 July 1764 in Lorient FateSold to the French navy France NameVengeur NamesakeAvenger OwnerFrench Navy AcquiredJuly 1765[1] DecommissionedFebruary 1784[1] StrickenAp...
Song by David Bowie New Killer StarSingle by David Bowiefrom the album Reality B-sideLove Missile F1-11Released29 September 2003RecordedLooking Glass Studios, New York CityGenreAlternative rockLength4:40 (Album version)3:43 (Radio edit)LabelColumbia/ISO RecordsCOL 674275 9Songwriter(s)David BowieProducer(s)David Bowie, Tony ViscontiDavid Bowie singles chronology I've Been Waiting for You (2002) New Killer Star (2003) Never Get Old (2003) Music videoNew Killer Star on YouTube New Killer Star i...