Lens space

The lens space L(2;5) consists of the "lens" between the red and yellow walls using a double rotation that aligns the slits. Five "lens" regions are shown in the picture in total.
The double-rotation that identifies the walls of the lens space. In this stereographic view, the double-rotation rotates both around the z-axis and along it.

A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions.

In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and , both of which can be obtained as above, are not counted as they are considered trivial special cases.

The three-dimensional lens spaces were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces and were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have the same homotopy type. Other lens spaces (such as and ) have even the same homotopy type (and thus isomorphic fundamental groups and homology), but not the same homeomorphism type; they can thus be seen as the birth of geometric topology of manifolds as distinct from algebraic topology.

There is a complete classification of three-dimensional lens spaces, by fundamental group and Reidemeister torsion.

Definition

The three-dimensional lens spaces are quotients of by -actions. More precisely, let and be coprime integers and consider as the unit sphere in . Then the -action on generated by the homeomorphism

is free. The resulting quotient space is called the lens space .

This can be generalized to higher dimensions as follows: Let be integers such that the are coprime to and consider as the unit sphere in . The lens space is the quotient of by the free -action generated by

In three dimensions we have

Properties

The fundamental group of all the lens spaces is independent of the .

The homology of the lens space is given by[1]

Lens spaces are locally symmetric spaces, but not (fully) symmetric, with the exception of which is symmetric. (Locally symmetric spaces are symmetric spaces that are quotiented by an isometry that has no fixed points; lens spaces meet this definition.)

Alternative definitions of three-dimensional lens spaces

The three dimensional lens space is often defined to be a solid ball with the following identification: first mark p equally spaced points on the equator of the solid ball, denote them to , then on the boundary of the ball, draw geodesic lines connecting the points to the north and south pole. Now identify spherical triangles by identifying the north pole to the south pole and the points with and with . The resulting space is homeomorphic to the lens space .

Another related definition is to view the solid ball as the following solid bipyramid: construct a planar regular p sided polygon. Put two points n and s directly above and below the center of the polygon. Construct the bipyramid by joining each point of the regular p sided polygon to n and s. Fill in the bipyramid to make it solid and give the triangles on the boundary the same identification as above.

Classification of 3-dimensional lens spaces

Classifications up to homeomorphism and homotopy equivalence are known, as follows. The three-dimensional spaces and are:

  1. homotopy equivalent if and only if for some ;
  2. homeomorphic if and only if .

If as in case 2., they are "obviously" homeomorphic, as one can easily produce a homeomorphism. It is harder to show that these are the only homeomorphic lens spaces.

The invariant that gives the homotopy classification of 3-dimensional lens spaces is the torsion linking form.

The homeomorphism classification is more subtle, and is given by Reidemeister torsion. This was given in (Reidemeister 1935) as a classification up to PL homeomorphism, but it was shown in (Brody 1960) to be a homeomorphism classification. In modern terms, lens spaces are determined by simple homotopy type, and there are no normal invariants (like characteristic classes) or surgery obstruction.

A knot-theoretic classification is given in (Przytycki & Yasukhara 2003): let C be a closed curve in the lens space which lifts to a knot in the universal cover of the lens space. If the lifted knot has a trivial Alexander polynomial, compute the torsion linking form on the pair (C,C) – then this gives the homeomorphism classification.

Another invariant is the homotopy type of the configuration spaces – (Salvatore & Longoni 2005) showed that homotopy equivalent but not homeomorphic lens spaces may have configuration spaces with different homotopy types, which can be detected by different Massey products.

See also

References

  1. ^ Hatcher 2002, p. 144
  • Glen Bredon, Topology and Geometry, Springer Graduate Texts in Mathematics 139, 1993.
  • Cohen, Marshall M., A Course in Simple-Homotopy Theory, Springer Graduate Texts in Mathematics 10, 1973.
  • Brody, E. J. (1960), "The topological classification of the lens spaces", Annals of Mathematics, 2, 71 (1): 163–184, doi:10.2307/1969884, JSTOR 1969884
  • Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • Allen Hatcher, Notes on basic 3-manifold topology. (Explains classification of L(p,q) up to homeomorphism.)
  • Przytycki, Józef H.; Yasukhara, Akira (2003), "Symmetry of Links and Classification of Lens Spaces", Geometriae Dedicata, 98 (1): 57–61, doi:10.1023/A:10240, MR 1988423
  • Reidemeister, Kurt (1935), "Homotopieringe und Linsenräume", Abh. Math. Sem. Univ. Hamburg, 11 (1): 102–109, doi:10.1007/BF02940717
  • Salvatore, Paolo; Longoni, Riccardo (2005), "Configuration spaces are not homotopy invariant", Topology, 44 (2): 375–380, arXiv:math/0401075, doi:10.1016/j.top.2004.11.002
  • Herbert Seifert and William Threlfall, A textbook of topology, Pure and Applied Mathematics 89, Translated from the German edition of 1934, Academic Press Inc. New York (1980)
  • Heinrich Tietze, Ueber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. fuer Math. und Phys. 19, 1–118 (1908) (20) English translation (2008) by John Stillwell.
  • Watkins, Matthew (1990), A Short Survey of Lens Spaces (PDF) (undergraduate dissertation), archived from the original (PDF) on 2006-09-25

Read other articles:

Geographical region in Turkey Not to be confused with Silesia. Geographical region in Adana, TurkeyCilicia قيليقيةԿիլիկիաΚιλικίαKilikyaGeographical regionCilicia in the Roman EmpireCoordinates: 36°59′06″N 35°07′12″E / 36.985°N 35.120°E / 36.985; 35.120CountryTurkeyLargest cityAdanaProvincesMersin, Adana, Osmaniye, HatayArea • Total38,585.16 km2 (14,897.81 sq mi)Population (2022)[1] • T...

 

اقتصاد بدعيمعلومات عامةصنف فرعي من مدارس الفكر الإقتصادي النقيض اقتصاد سائد لديه جزء أو أجزاء الاقتصاد الماركسياقتصاد بعد-الكينزياقتصاد نسوي تعديل - تعديل مصدري - تعديل ويكي بيانات الاقتصاد البدعي (بالإنجليزية: Heterodox economics)‏، مصطلح يُستخدم على النقيض من الاقتصاد الأرثوذكس

 

Emperor of Ethiopia from 1270 to 1285 Yekuno Amlakይኩኖ አምላክContemporary portrait of Yekuno Amlak from the Genneta Maryam church, Lalibela[1]Emperor of EthiopiaReign10 August 1270 – 19 June 1285SuccessorYagbe'u Seyon[2]BornBete AmharaDied19 June 1285Ethiopian EmpireRegnal nameTasfa IyasusDynastyHouse of SolomonReligionEthiopian Orthodox Church This article contains Ethiopic text. Without proper rendering support, you may see question marks, boxes, or other symbol...

ليتوياني     الإحداثيات 37°53′00″N 15°18′00″E / 37.883333333333°N 15.3°E / 37.883333333333; 15.3  [1] تقسيم إداري  البلد إيطاليا[2]  التقسيم الأعلى مقاطعة مسينة  [لغات أخرى]‏ (4 يناير 2016–)  خصائص جغرافية  المساحة 6.72 كيلومتر مربع (9 أكتوبر 2011)[3]  ارتفاع 5

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) باربرا مكنمارا   معلومات شخصية الميلاد سنة 1942 (العمر 80–81 سنة)  كلينتون  مواطنة الولايات المتحدة  الحياة العملية المهنة لغوية  تعديل مصدري - تعدي

 

32-й окремий батальйон Засновано 3 червня 1994Країна  УкраїнаНалежність  Національна гвардіяУ складі Західне ОТОБазування  Волинська область,м.ЛуцькВійни/битви Російська збройна агресія проти України Війна на сході УкраїниКомандуванняПоточнийкомандувач підп...

Maurice Petry (* 27. Dezember 1955 in Vottem, Lüttich) ist ein ehemaliger belgischer Radrennfahrer und nationaler Meister im Radsport. Sportliche Laufbahn Petry war Bahnradfahrer. Bei den Amateuren siegte er 1974 in der nationalen Meisterschaft im Sprint vor Hugo Maréchal. 1975 wurde er Vize-Meister im Tandemrennen mit Robert Maveau als Partner. 1978 und 1979 fuhr er als Berufsfahrer im Radsportteam Safir. Nachdem Erfolge ausblieben, beendete er seine Laufbahn als Radprofi. Weblinks Maurice...

 

Pour les articles homonymes, voir Aéroport de Hong Kong. Cet article est une ébauche concernant un aéroport hongkongais. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Aéroport international deHong KongHong Kong International Airport Aéroport international de Hong Kong. Localisation Pays Hong Kong Ville Hong Kong Date d'ouverture 6 juillet 1998 Coordonnées 22° 18′ 32″ nord, 113° 55

 

El Foro Consultivo de Fiscales Generales y Directores de Acción Penal de la Unión Europea creado por impulso de la Presidencia española de la UE en mayo de 2010, sienta a los 27 Fiscales Generales o Directores de Acción Pública (dependiendo de las características de cada sistema) de cada uno de los Estados miembros con representantes de la Marco institucional de la Unión Europea (Comisión, Consejo y Parlamento) para que éstos puedan oír la opinión de las diversas Fiscalías al dise...

Polish volleyball player, sports activist, and politician Andrzej SzewińskiMember of SejmIncumbentAssumed office 12 November 2019ConstituencyCzęstochowaMember of SenateIn office5 November 2007 – 11 November 2015Succeeded byArtur WarzochaConstituencyCzęstochowa Personal detailsBorn20 February 1970 (1970-02-20) (age 53)WarsawPolitical partyCivic Platform Andrzej Szewiński (born 20 February 1970 in Warsaw, Poland) is a former professional volleyball player (198 ...

 

Любка зеленоквіткова Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Однодольні (Monocotyledon) Порядок: Холодкоцвіті (Asparagales) Родина: Зозулинцеві (Orchidaceae) Рід: Любка (рослина) (Platanthera) Вид: Любка зеленоквіткова (P.&#...

 

Israeli artistic gymnast This article needs to be updated. Please help update this article to reflect recent events or newly available information. (December 2020) Felix AronovichFelix Aronovich at a consolidation event of the Olympic Committee of Israel in Eilat, 2012Personal informationFull nameFelix AronovichCountry represented IsraelBorn (1988-07-18) July 18, 1988 (age 35)Odesa, UkraineHometownKiryat Bialik, IsraelResidenceKiryat Bialik, IsraelHeight168 cm (5.51 f...

Somchai Wongsawatสมชาย วงศ์สวัสดิ์Perdana Menteri Thailand 35Masa jabatan17 September 2008 – 2 Desember 2008(Pejabat sementara sejak 10 September 2008)Penguasa monarkiRama IXPendahuluSamak SundaravejPenggantiChaovarat Chanweerakul Informasi pribadiLahir31 Agustus 1947 (umur 76)Nakhon Si Thammarat, ThailandPartai politikPPPSuami/istriYaowabha WongsawatSunting kotak info • L • B Somchai Wongsawat (bahasa Thai: สมชาย...

 

1951–1970 political party in South Korea Liberal Party[a] 자유당自由黨LeaderLee Jae-hakFounderRhee SyngmanFounded17 December 1951[b]7 September 1963[c]Dissolved16 May 1961[b]24 January 1970[c]Preceded byKorean National Youth Association (de facto)National Association[d]Korean Federation of LaborPeasant FederationKorean Council of WivesHeadquartersSeoul, South KoreaIdeologyIlminismConservatism (South Korean)[1][2]Kore...

 

UK magazine and website Not to be confused with Computer Games Magazine. Computer and Video GamesMarch 1991 coverEditorAndy RobinsonCategoriesComputer magazineFrequencyMonthlyFirst issueNovember 1981Final issueOctober 2004CompanyFuture PublishingCountryUKBased inLondonWebsitecomputerandvideogames.com (defunct)ISSN0261-3697 Computer and Video Games (also known as CVG, Computer & Video Games, C&VG, Computer + Video Games, or C+VG) was a UK-based video game magazine, published in its ori...

2006 American filmKettle of FishFilm posterDirected byClaudia MyersWritten byClaudia MyersProduced byAgathe David-WeillBlythe FrankMarc LazardMichael MailerStarring Matthew Modine Gina Gershon CinematographyNeil LiskEdited byPete BeaudreauMusic byDavid TobocmanRelease date April 27, 2006 (2006-04-27) (Tribeca) Running time97 minutesCountryUnited StatesLanguageEnglish Kettle of Fish is a 2006 American romantic comedy film written and directed by Claudia Myers and starring Ma...

 

The opening lines of Pascon agan Arluth in the 1826 edition The anonymous poem Pascon agan Arluth is the oldest complete literary work in the Cornish language, dating from the 14th century. The modern title (it is untitled in the oldest manuscript) means The Passion of Our Lord, but the poem has also been published as Mount Calvary.[1][2] Date, manuscripts and authorship Pascon agan Arluth dates from the 14th century;[note 1] it pre-dates the Ordinalia, a cycle of thre...

 

Village in Anglesey, Wales Human settlement in WalesRhydwynvillage centreRhydwynLocation within AngleseyOS grid referenceSH 31517 88968• Cardiff142.5 mi (229.3 km)• London225.7 mi (363.2 km)CommunityCylch-y-GarnPrincipal areaAngleseyCountryWalesSovereign stateUnited KingdomPost townHolyheadPostcode districtLL65PoliceNorth WalesFireNorth WalesAmbulanceWelsh UK ParliamentYnys MônSenedd Cymru – Welsh ParliamentYnys Môn List of p...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) علم دولة صربيا ومونتينيغرو السابقة، والتي كانت تعرف سابقًا باسم جمهورية يوغوسلافيا الاتحادية من 1992 إلى 2003. العلم المقترح لصربيا ومونتينيغرو عام 2003. تم تصمي...

 

Constituency of the Andhra Pradesh Legislative Assembly, India KanigiriConstituency for the Andhra Pradesh Legislative AssemblyLocation of Kanigiri Assembly constituency within Andhra PradeshConstituency detailsCountryIndiaRegionSouth IndiaStateAndhra PradeshDistrictPrakasamTotal electors231,881ReservationNoneMember of Legislative Assembly15th Andhra Pradesh Legislative AssemblyIncumbent Burra Madhu Sudhan Yadav PartyYSR Congress Party Kanigiri Assembly constituency is a constituency of the A...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!