The larynx (/ˈlærɪŋks/), commonly called the voice box, is an organ in the top of the neck involved in breathing, producing sound and protecting the trachea against food aspiration. The opening of larynx into pharynx known as the laryngeal inlet is about 4–5 centimeters in diameter.[1] The larynx houses the vocal cords, and manipulates pitch and volume, which is essential for phonation. It is situated just below where the tract of the pharynx splits into the trachea and the esophagus. The word 'larynx' (pl.: larynges) comes from the Ancient Greek word lárunx ʻlarynx, gullet, throatʼ.[2]
Structure
The triangle-shaped larynx consists largely of cartilages that are attached to one another, and to surrounding structures, by muscles or by fibrous and elastic tissue components. The larynx is lined by a ciliated columnar epithelium except for the vocal folds. The cavity of the larynx extends from its triangle-shaped inlet, to the epiglottis, and to the circular outlet at the lower border of the cricoid cartilage, where it is continuous with the lumen of the trachea. The mucous membrane lining the larynx forms two pairs of lateral folds that project inward into its cavity. The upper folds are called the vestibular folds. They are also sometimes called the false vocal cords for the rather obvious reason that they play no part in vocalization. The Kargyraa style of Tuvan throat singing makes use of these folds to sing an octave lower, and they are used in Umngqokolo, a type of Xhosa throat singing. The lower pair of folds are known as the vocal cords, which produce sounds needed for speech and other vocalizations. The slit-like space between the left and right vocal cords, called the rima glottidis, is the narrowest part of the larynx. The vocal cords and the rima glottidis are together designated as the glottis. The laryngeal cavity above the vestibular folds is called the vestibule. The very middle portion of the cavity between the vestibular folds and the vocal cords is the ventricle of the larynx, or laryngeal ventricle. The infraglottic cavity is the open space below the glottis.
Posterior view of the larynx; disarticulated cartilages (left) and intrinsic muscles (right)
There are nine cartilages, three unpaired and three paired (3 pairs=6), that support the mammalian larynx and form its skeleton.
Unpaired cartilages:
Thyroid cartilage: This forms the Adam's apple (also called the laryngeal prominence). It is usually larger in males than in females. The thyrohyoid membrane is a ligament associated with the thyroid cartilage that connects it with the hyoid bone. It supports the front portion of the larynx.
Cricoid cartilage: A ring of hyaline cartilage that forms the inferior wall of the larynx. It is attached to the top of the trachea. The median cricothyroid ligament connects the cricoid cartilage to the thyroid cartilage.
Epiglottis: A large, spoon-shaped piece of elastic cartilage. During swallowing, the pharynx and larynx rise. Elevation of the pharynx widens it to receive food and drink; elevation of the larynx causes the epiglottis to move down and form a lid over the glottis, closing it off.
Paired cartilages:
Arytenoid cartilages: Of the paired cartilages, the arytenoid cartilages are the most important because they influence the position and tension of the vocal cords. These are triangular pieces of mostly hyaline cartilage located at the posterosuperior border of the cricoid cartilage.
Corniculate cartilages: Horn-shaped pieces of elastic cartilage located at the apex of each arytenoid cartilage.
Cuneiform cartilages: Club-shaped pieces of elastic cartilage located anterior to the corniculate cartilages.
Muscles
The muscles of the larynx are divided into intrinsic and extrinsic muscles. The extrinsic muscles act on the region and pass between the larynx and parts around it but have their origin elsewhere; the intrinsic muscles are confined entirely within the larynx and have their origin and insertion there.[4]
Thyroarytenoid muscles narrow the laryngeal inlet, shortening the vocal cords, and lowering voice pitch. The internal thyroarytenoid is the portion of the thyroarytenoid that vibrates to produce sound.
Notably the only muscle capable of separating the vocal cords for normal breathing is the posterior cricoarytenoid. If this muscle is incapacitated on both sides, the inability to pull the vocal cords apart (abduct) will cause difficulty breathing. Bilateral injury to the recurrent laryngeal nerve would cause this condition. It is also worth noting that all muscles are innervated by the recurrent laryngeal branch of the vagus except the cricothyroid muscle, which is innervated by the external laryngeal branch of the superior laryngeal nerve (a branch of the vagus).
Additionally, intrinsic laryngeal muscles present a constitutive Ca2+-buffering profile that predicts their better ability to handle calcium changes in comparison to other muscles.[6] This profile is in agreement with their function as very fast muscles with a well-developed capacity for prolonged work. Studies suggests that mechanisms involved in the prompt sequestering of Ca2+ (sarcoplasmic reticulum Ca2+-reuptake proteins, plasma membrane pumps, and cytosolic Ca2+-buffering proteins) are particularly elevated in laryngeal muscles, indicating their importance for the myofiber function and protection against disease, such as Duchenne muscular dystrophy.[7] Furthermore, different levels of Orai1 in rat intrinsic laryngeal muscles and extraocular muscles over the limb muscle suggests a role for store operated calcium entry channels in those muscles' functional properties and signaling mechanisms.
Extrinsic
The extrinsic laryngeal muscles support and position the larynx within the mid-cervical cereal region.
The larynx is innervated by branches of the vagus nerve on each side. Sensory innervation to the glottis and laryngeal vestibule is by the internal branch of the superior laryngeal nerve. The external branch of the superior laryngeal nerve innervates the cricothyroid muscle. Motor innervation to all other muscles of the larynx and sensory innervation to the subglottis is by the recurrent laryngeal nerve. While the sensory input described above is (general) visceral sensation (diffuse, poorly localized), the vocal cords also receives general somatic sensory innervation (proprioceptive and touch) by the superior laryngeal nerve.
Injury to the external branch of the superior laryngeal nerve causes weakened phonation because the vocal cords cannot be tightened. Injury to one of the recurrent laryngeal nerves produces hoarseness, if both are damaged the voice may or may not be preserved, but breathing becomes difficult.
Development
In newborn infants, the larynx is initially at the level of the C2–C3 vertebrae, and is further forward and higher relative to its position in the adult body.[8] The larynx descends as the child grows.[9][10]
Laryngeal cavity
Laryngeal cavity
Sagittal section of the larynx and upper part of the trachea.
Coronal section of larynx and upper part of trachea.
The laryngeal cavity (cavity of the larynx) extends from the laryngeal inlet downwards to the lower border of the cricoid cartilage where it is continuous with that of the trachea.[11][12]
It is divided into two parts by the projection of the vocal folds, between which is a narrow triangular opening, the rima glottidis.
The portion of the cavity of the larynx above the vocal folds is called the laryngeal vestibule; it is wide and triangular in shape, its base or anterior wall presenting, however, about its center the backward projection of the tubercle of the epiglottis.
The portion below the vocal folds is called the infraglottic cavity. It is at first of an elliptical form, but lower down it widens out, assumes a circular form, and is continuous with the tube of the trachea.
Function
Sound generation
Sound is generated in the larynx, and that is where pitch and volume are manipulated. The strength of expiration from the lungs also contributes to loudness.
Manipulation of the larynx is used to generate a source sound with a particular fundamental frequency, or pitch. This source sound is altered as it travels through the vocal tract, configured differently based on the position of the tongue, lips, mouth, and pharynx. The process of altering a source sound as it passes through the filter of the vocal tract creates the many different vowel and consonant sounds of the world's languages as well as tone, certain realizations of stress and other types of linguistic prosody. The larynx also has a similar function to the lungs in creating pressure differences required for sound production; a constricted larynx can be raised or lowered affecting the volume of the oral cavity as necessary in glottalic consonants.
The vocal cords can be held close together (by adducting the arytenoid cartilages) so that they vibrate (see phonation). The muscles attached to the arytenoid cartilages control the degree of opening. Vocal cord length and tension can be controlled by rocking the thyroid cartilage forward and backward on the cricoid cartilage (either directly by contracting the cricothyroids or indirectly by changing the vertical position of the larynx), by manipulating the tension of the muscles within the vocal cords, and by moving the arytenoids forward or backward. This causes the pitch produced during phonation to rise or fall. In most males the vocal cords are longer and have a greater mass than most females' vocal cords, producing a lower pitch.
The vocal apparatus consists of two pairs of folds, the vestibular folds (false vocal cords) and the true vocal cords. The vestibular folds are covered by respiratory epithelium, while the vocal cords are covered by stratified squamous epithelium. The vestibular folds are not responsible for sound production, but rather for resonance. The exceptions to this are found in Tibetan chanting and Kargyraa, a style of Tuvan throat singing. Both make use of the vestibular folds to create an undertone. These false vocal cords do not contain muscle, while the true vocal cords do have skeletal muscle.
Other
The most important role of the larynx is its protective function, the prevention of foreign objects from entering the lungs by coughing and other reflexive actions. A cough is initiated by a deep inhalation through the vocal cords, followed by the elevation of the larynx and the tight adduction (closing) of the vocal cords. The forced expiration that follows, assisted by tissue recoil and the muscles of expiration, blows the vocal cords apart, and the high pressure expels the irritating object out of the throat. Throat clearing is less violent than coughing, but is a similar increased respiratory effort countered by the tightening of the laryngeal musculature. Both coughing and throat clearing are predictable and necessary actions because they clear the respiratory passageway, but both place the vocal cords under significant strain.[13]
Another important role of the larynx is abdominal fixation, a kind of Valsalva maneuver in which the lungs are filled with air in order to stiffen the thorax so that forces applied for lifting can be translated down to the legs. This is achieved by a deep inhalation followed by the adduction of the vocal cords. Grunting while lifting heavy objects is the result of some air escaping through the adducted vocal cords ready for phonation.[13]
Abduction of the vocal cords is important during physical exertion. The vocal cords are separated by about 8 mm (0.31 in) during normal respiration, but this width is doubled during forced respiration.[13]
During swallowing, elevation of the posterior portion of the tongue levers (inverts) the epiglottis over the glottis' opening to prevent swallowed material from entering the larynx which leads to the lungs, and provides a path for a food or liquid bolus to "slide" into the esophagus; the hyo-laryngeal complex is also pulled upwards to assist this process. Stimulation of the larynx by aspirated food or liquid produces a strong coughreflex to protect the lungs.
In addition, intrinsic laryngeal muscles are spared from some muscle wasting disorders, such as Duchenne muscular dystrophy, may facilitate the development of novel strategies for the prevention and treatment of muscle wasting in a variety of clinical scenarios. ILM have a calcium regulation system profile suggestive of a better ability to handle calcium changes in comparison to other muscles, and this may provide a mechanistic insight for their unique pathophysiological properties[6]
Clinical significance
Disorders
There are several things that can cause a larynx to not function properly.[14] Some symptoms are hoarseness, loss of voice, pain in the throat or ears, and breathing difficulties.
Acute laryngitis is the sudden inflammation and swelling of the larynx. It is caused by the common cold or by excessive shouting. It is not serious.
Chronic laryngitis is caused by smoking, dust, frequent yelling, or prolonged exposure to polluted air. It is much more serious than acute laryngitis.
Presbylarynx is a condition in which age-related atrophy of the soft tissues of the larynx results in weak voice and restricted vocal range and stamina. Bowing of the anterior portion of the vocal colds is found on laryngoscopy.
Laryngomalacia is a very common condition of infancy, in which the soft, immature cartilage of the upper larynx collapses inward during inhalation, causing airway obstruction.
Laryngeal paralysis is a condition seen in some mammals (including dogs) in which the larynx no longer opens as wide as required for the passage of air, and impedes respiration. In mild cases it can lead to exaggerated or "raspy" breathing or panting, and in serious cases can pose a considerable need for treatment.
Duchenne muscular dystrophy, intrinsic laryngeal muscles (ILM) are spared from the lack of dystrophin and may serve as a useful model to study the mechanisms of muscle sparing in neuromuscular diseases.[7] Dystrophic ILM presented a significant increase in the expression of calcium-binding proteins. The increase of calcium-binding proteins in dystrophic ILM may permit better maintenance of calcium homeostasis, with the consequent absence of myonecrosis. The results further support the concept that abnormal calcium buffering is involved in these neuromuscular diseases.[17]
Treatments
Patients who have lost the use of their larynx are typically prescribed the use of an electrolarynx device.[18][19][20] Larynx transplants are a rare procedure.[20][21] The world's first successful operation took place in 1998 at the Cleveland Clinic,[22] and the second took place in October 2010 at the University of California Davis Medical Center in Sacramento.[23]
Other animals
Pioneering work on the structure and evolution of the larynx was carried out in the 1920s by the British comparative anatomist Victor Negus, culminating in his monumental work The Mechanism of the Larynx (1929). Negus, however, pointed out that the descent of the larynx reflected the reshaping and descent of the human tongue into the pharynx. This process is not complete until age six to eight years. Some researchers, such as Philip Lieberman, Dennis Klatt, Bart de Boer and Kenneth Stevens using computer-modeling techniques have suggested that the species-specific human tongue allows the vocal tract (the airway above the larynx) to assume the shapes necessary to produce speech sounds that enhance the robustness of human speech. Sounds such as the vowels of the words ⟨see⟩ and ⟨do⟩, [i] and [u] (in phonetic notation), have been shown to be less subject to confusion[compared to?] in classic studies such as the 1950 Peterson and Barney investigation of the possibilities for computerized speech recognition.[24]
In contrast, though other species have low larynges, their tongues remain anchored in their mouths and their vocal tracts cannot produce the range of speech sounds of humans. The ability to lower the larynx transiently in some species extends the length of their vocal tract, which as Fitch showed creates the acoustic illusion that they are larger. Research at Haskins Laboratories in the 1960s showed that speech allows humans to achieve a vocal communication rate that exceeds the fusion frequency of the auditory system by fusing sounds together into syllables and words. The additional speech sounds that the human tongue enables us to produce, particularly [i], allow humans to unconsciously infer the length of the vocal tract of the person who is talking, a critical element in recovering the phonemes that make up a word.[24]
Non-mammals
Most tetrapod species possess a larynx, but its structure is typically simpler than that found in mammals. The cartilages surrounding the larynx are apparently a remnant of the original gill arches in fish, and are a common feature, but not all are always present. For example, the thyroid cartilage is found only in mammals. Similarly, only mammals possess a true epiglottis, although a flap of non-cartilagenous mucosa is found in a similar position in many other groups. In modern amphibians, the laryngeal skeleton is considerably reduced; frogs have only the cricoid and arytenoid cartilages, while salamanders possess only the arytenoids.[25]
An example of a frog that possesses a larynx is the túngara frog. While the larynx is the main sound producing organ in túngara frogs, it serves a higher significance due to its contribution to mating call, which consist of two components: 'whine' and 'chuck'.[26] While 'whine' induces female phonotaxis and allows species recognition, 'chuck' increases mating attractiveness.[27] In particular, the túngara frog produces 'chuck' by vibrating the fibrous mass attached to the larynx.[27]
Vocal folds are found only in mammals, and a few lizards. As a result, many reptiles and amphibians are essentially voiceless; frogs use ridges in the trachea to modulate sound, while birds have a separate sound-producing organ, the syrinx.[25]
History
The ancient Greek physician Galen first described the larynx, describing it as the "first and supremely most important instrument of the voice".[28]
^Suárez-Quintanilla J, Fernández Cabrera A, Sharma S (2021). "article-24061". Anatomy, Head and Neck, Larynx. Treasure Island (FL): StatPearls Publishing. PMID30855790. Retrieved 2021-04-02. The larynx is about 4 to 5cm in length and width, with a slightly shorter anterior-posterior diameter. It is smaller in women than men, and larger in adults than children owing to its growth in puberty. A larger larynx correlates with a deeper voice.
^Krishnan G, Du C, Fishman JM, Foreman A, Lott DG, Farwell G, et al. (August 2017). "The current status of human laryngeal transplantation in 2017: A state of the field review". The Laryngoscope. 127 (8): 1861–1868. doi:10.1002/lary.26503. PMID28224630. S2CID24360597.
^Hydman J (2008). Recurrent laryngeal nerve injury. Stockholm. p. 8. ISBN978-91-7409-123-6.{{cite book}}: CS1 maint: location missing publisher (link)
Sources
Laitman JT, Noden DM, Van De Water TR (2006). "Formation of the larynx: from homeobox genes to critical periods". In Rubin JS, Sataloff RT, Korovin GS (eds.). Diagnosis & Treatment Voice Disorders. San Diego: Plural. pp. 3–20. ISBN9781597560078. OCLC63279542.
Laitman JT, Reidenberg JS (1993). "Specializations of the human upper respiratory and upper digestive systems as seen through comparative and developmental anatomy". Dysphagia. 8 (4): 318–325. doi:10.1007/BF01321770. PMID8269722. S2CID23308320.
Laitman JT, Reidenberg JS (November 1997). "The human aerodigestive tract and gastroesophageal reflux: an evolutionary perspective". The American Journal of Medicine. 103 (5A): 2S –8S. doi:10.1016/s0002-9343(97)00313-6. PMID9422615.
Laitman JT, Reidenberg JS (2009). "The evolution of the human larynx: Nature's great experiment". In Fried MP, Ferlito A (eds.). The Larynx (3rd ed.). San Diego: Plural. pp. 19–38. ISBN978-1597560627. OCLC183609898.
Lieberman P (2006). Toward an Evolutionary Biology of Language. Harvard University Press. ISBN0-674-02184-3. OCLC62766735.
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2023) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (...
Pieczęć zakonu templariuszy Zakon rycerski – pierwotnie w Kościele katolickim zakon, w skład którego wchodzili zakonnicy (duchowni) oraz bracia-rycerze, czyli rycerze, którzy nie przyjmując święceń, godzili się żyć jak zakonnicy (składali śluby czystości i ubóstwa). Ich głównym zadaniem była nie tylko modlitwa czy kontemplacja, lecz również walka w obronie wiary i ideałów przyjętych w regule zakonnej. Pierwsze zakony rycerskie powstawały na fali krucjat (w Królest...
Bên trong Nhà nguyện Sistine cho thấy trần nhà liên quan đến các bức bích họa khác. Trần nhà nguyện Sistine, được vẽ bởi Michelangelo từ năm 1508 đến năm 1512, là tác phẩm nền tảng của nghệ thuật thời Phục hưng cao. Trần nhà của Nhà nguyện Sistine, nhà nguyện lớn được xây dựng trong Vatican giữa năm 1477 và 1480 bởi Giáo hoàng Sixtus IV, nơi mà nhà nguyện được đặt tên. Nó được vẽ theo ...
1979 soundtrack album by Willie NelsonThe Electric Horseman: Music from the Original Motion Picture SoundtrackSoundtrack album by Willie NelsonReleasedDecember 1979Recorded1979GenreCountryLength33:30LabelColumbia RecordsProducerDave GrusinLarry RosenWillie NelsonSydney PollackWillie Nelson chronology Pretty Paper(1979) The Electric Horseman: Music from the Original Motion Picture Soundtrack(1979) San Antonio Rose(1980) Singles from The Electric Horseman: Music from the Original Motion...
Style of house The Gamble House, seen in April 2005. An ultimate bungalow is a large and detailed American Craftsman-style home, based on the bungalow form. Overview The ultimate bungalow style is associated with such California architects as Greene and Greene, Bernard Maybeck and Julia Morgan. Some of the hallmarks of Greene and Greene's ultimate bungalows include the use of tropical woods such as mahogany, ebony and teak, and use of inlays of wood, metal and mother-of-pearl. As in their oth...
Battle fought in February 1979 during the Uganda-Tanzania War For the 1985 battle of the Ugandan Bush War, see Siege of Masaka. Battle of MasakaPart of the Uganda–Tanzania WarMasakaBattle of Masaka (Uganda)Date23–24 February 1979LocationMasaka, UgandaResult Tanzanian-Ugandan rebel victoryTerritorialchanges Masaka captured by Tanzanian and Ugandan rebel forcesBelligerents Tanzania Ugandan rebels UgandaCommanders and leaders David Musuguri John Walden Isaac MaliyamunguBernard Rw...
Dog breedNorfolk SpanielDash II, Norfolk Spaniel show dog who competed at the Westminster Kennel Club Dog Show in 1886 and placed second in the large spaniel class.Other namesShropshire SpanielOriginUnited KingdomBreed statusExtinctDog (domestic dog) The Norfolk Spaniel or Shropshire Spaniel is an extinct breed of dog since the early 20th century. It was originally thought to have originated from the work of one of the Dukes of Norfolk, but this theory was disproven after being in doubt durin...
The purpose of this redirect is currently being discussed by the Wikipedia community. The outcome of the discussion may result in a change of this page, or possibly its deletion in accordance with Wikipedia's deletion policy. Please share your thoughts on the matter at this redirect's entry on the Redirects for discussion page. Click on the link below to go to the current destination page.Please notify the good-faith creator and any main contributors of the redirect by placing {{sub...
Alternate term for or form of artificial intelligence Synthetic intelligence (SI) is an alternative/opposite term for artificial intelligence emphasizing that the intelligence of machines need not be an imitation or in any way artificial; it can be a genuine form of intelligence.[1][2] John Haugeland proposes an analogy with simulated diamonds and synthetic diamonds—only the synthetic diamond is truly a diamond.[1] Synthetic means that which is produced by synthesis,...
Cuban actress and singer (1915–2004) Raquel RodrigoBorn(1915-03-11)11 March 1915Havana, CubaDied18 March 2004(2004-03-18) (aged 89)Madrid, SpainOther namesRaquel Rodrigo LópezOccupation(s)Actress, SingerYears active1932–1997 (film) Raquel Rodrigo (1915–2004) was a Cuban actress and singer who appeared in Spanish films. In 1935, she appeared in the music film Paloma Fair.[1] Filmography Year Title Role Notes 1932 Carceleras 1933 Una morena y una rubia 1934 Odio 19...
Pandawa dan Kresna dalam suatu adegan pagelaran wayang wong. Gedung Sriwedari Surakarta, tempat pagelaran wayang wong Pertunjukan wayang wong, sekitar tahun 1925. Wayang wong (berasal dari Jawa: ꦮꦪꦁꦮꦺꦴꦁ, translit. wayang wong, har. 'wayang orang') adalah wayang yang dimainkan dengan menggunakan orang sebagai tokoh dalam cerita wayang tersebut. Wayang wong diciptakan oleh Sri Susuhunan Hamangkurat I pada tahun 1731 di Kerajaan Mataram. Sesuai dengan nama ...
Makam (bangunan seperti bungalow), dan area sekitarnya Monolit Silwan, juga dikenal sebagai Makam Putri Firaun (bahasa Inggris: Tomb of Pharaoh's daughter) adalah sebuah makam yang digali dalam bukit batu karang yang terletak di Silwan, Yerusalem.[1] Makam ini bertarikh pembuatan dari zaman Kerajaan Yehuda. Nama Makam Putri Firaun merujuk kepada hipotesis dari abad ke-19 bahwa makam itu dibangun oleh raja Salomo untuk istrinya yang berasal dari Mesir.[2][3] Struktu...
BBC Cymru WalesBerkas:BBC Cymru Wales logo.svgBBC Cymru Kawasan Wales di Britania RayaKantor pusatBroadcasting House,Llandaff, CardiffArea siaranWalesStasiun TVBBC One WalesBBC Two WalesPemancar TVBlaenplwyfCarmelLlanddonaMoel-y-ParcPreseliWenvoeDiluncurkan9 Februari 1964; 59 tahun lalu (1964-02-09)Stasiun radio di area iniBBC Radio WalesBBC Radio CymruTokoh pentingRhodri Talfan Davies (Direktur BBC Cymru Wales)Situs webbbc.co.uk/wales BBC Cymru Wales adalah sebuah divisi BBC, dan penyia...
You can help expand this article with text translated from the corresponding article in French. (July 2018) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there are alr...
Annual association football trial match Home Scots v Anglo-Scots was an annual association football trial match organised by the Scottish Football Association between the 1890s and 1920s to examine the abilities of possible players for upcoming full British Home Championship internationals, primarily the 'Auld Enemy' England v Scotland fixture. Selection trials were commonplace among football federations,[1] but this match was unusual in that its regular format consisted of players ba...
Medieval noble house This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: House of Courtenay – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) House of CourtenayArms of the House of CourtenayCountry Latin Empire France EnglandFoundedc. 11thFounderAt...
Peta Lokasi Kabupaten Aceh Tamiang di Aceh Berikut ini adalah daftar kecamatan dan gampong di kabupaten Aceh Tamiang beserta kode pos dan data sensus penduduk 2010.Kabupaten Aceh Tamiang memiliki 12 kecamatan dan 213 gampong dengan kode pos 24471-24478 (dari total 243 kecamatan dan 5827 gampong di seluruh Aceh). Per tahun 2010, jumlah penduduk di wilayah ini adalah 250.992 (dari penduduk seluruh provinsi Aceh yang berjumlah 4.486.570) yang terdiri atas 126.724 pria dan 124.268 wanita (rasio 1...
Tractate of the Talmud about blessings and prayers, particularly the Shema and the Amidah This article may require copy editing for removal of external links from the article body. You can assist by editing it. (June 2023) (Learn how and when to remove this template message) BerakhotThe first page of tractate BerakhotTractate of the TalmudEnglish:BlessingsSeder:ZeraimNumber of Mishnahs:57Chapters:9Babylonian Talmud pages:64Jerusalem Talmud pages:68Tosefta chapters:6Peah → Berakhot ...