The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment.[1] One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.[2]
History
The combination of Hubbard-type models with Jaynes-Cummings (atom-photon) interactions near the photon blockade [3][4]regime originally appeared in three, roughly simultaneous papers in 2006.[5][6][7]
All three papers explored systems of interacting atom-cavity systems, and shared much of the essential underlying physics. Nevertheless, the term Jaynes–Cummings–Hubbard was not coined until 2008.[8]
Properties
Using mean-field theory to predict the phase diagram of the JCH model, the JCH model should exhibit Mott insulator and superfluid phases.[9]
Hamiltonian
The Hamiltonian of the JCH model is
():
where are Pauli operators for the two-level atom at the
n-th cavity. The is the tunneling rate between neighboring cavities, and is the vacuum Rabi frequency which characterizes to the photon-atom interaction strength. The cavity frequency is and atomic transition frequency is . The cavities are treated as periodic, so that the cavity labelled by n = N+1 corresponds to the cavity n = 1.[5] Note that the model exhibits quantum tunneling; this process is similar to the Josephson effect.[10][11]
Defining the photonic and atomic excitation number operators as and , the total number of excitations is a conserved quantity,
i.e., .[citation needed]
Two-polariton bound states
The JCH Hamiltonian supports two-polariton bound states when the photon-atom interaction is sufficiently strong. In particular, the two polaritons associated with the bound states exhibit a strong correlation such that they stay close to each other in position space.[12] This process is similar to the formation of a bound pair of repulsive bosonicatoms in an optical lattice.[13][14][15]
Further reading
D. F. Walls and G. J. Milburn (1995), Quantum Optics, Springer-Verlag.
^Imamoḡlu, A.; Schmidt, H.; Woods, G.; Deutsch, M. (25 August 1997). "Strongly Interacting Photons in a Nonlinear Cavity". Physical Review Letters. 79 (8): 1467–1470. doi:10.1103/PhysRevLett.79.1467.
^Birnbaum, K. M.; Boca, A.; Miller, R.; Boozer, A. D.; Northup, T. E.; Kimble, H. J. (July 2005). "Photon blockade in an optical cavity with one trapped atom". Nature. 436 (7047): 87–90. doi:10.1038/nature03804. PMID16001065.
^Makin, M. I.; Cole, Jared H.; Tahan, Charles; Hollenberg, Lloyd C. L.; Greentree, Andrew D. (21 May 2008). "Quantum phase transitions in photonic cavities with two-level systems". Physical Review A. 77 (5): 053819. arXiv:0710.5748. doi:10.1103/PhysRevA.77.053819.