J-homomorphism

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by George W. Whitehead (1942), extending a construction of Heinz Hopf (1935).

Definition

Whitehead's original homomorphism is defined geometrically, and gives a homomorphism

of abelian groups for integers q, and . (Hopf defined this for the special case .)

The J-homomorphism can be defined as follows. An element of the special orthogonal group SO(q) can be regarded as a map

and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q). Thus an element of can be represented by a map

Applying the Hopf construction to this gives a map

in , which Whitehead defined as the image of the element of under the J-homomorphism.

Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:

where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.

Image of the J-homomorphism

The image of the J-homomorphism was described by Frank Adams (1966), assuming the Adams conjecture of Adams (1963) which was proved by Daniel Quillen (1971), as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise (Switzer 1975, p. 488). In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant (Adams 1966), a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 1 1 1 1 2 2 1 1 1 1 2 2
1 2 1 24 1 1 1 240 2 2 1 504 1 1 1 480 2 2
2 2 24 1 1 2 240 22 23 6 504 1 3 22 480×2 22 24
16 130 142 130

Applications

Michael Atiyah (1961) introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.

The cokernel of the J-homomorphism appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres (Kosinski (1992)).

References

Read other articles:

British politician The Right HonourableRanil JayawardenaMPOfficial portrait, 2022Secretary of State for Environment, Food and Rural AffairsIn office6 September 2022 – 25 October 2022Prime MinisterLiz TrussPreceded byGeorge EusticeSucceeded byThérèse CoffeyParliamentary Under-Secretary of State for International TradeIn office5 May 2020 – 6 September 2022Prime MinisterBoris JohnsonPreceded byOffice establishedSucceeded byJames DuddridgeDeputy Chairman of the Conservativ...

 

Cet article est une ébauche concernant l’Angleterre et une université. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (avril 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compl

 

DeviPoster rilis digitalSutradara Priyanka Banerjee Produser Niranjan Iyengar Ryan Ivan Stephen Ditulis oleh Priyanka Banerjee PemeranKajolShruti HaasanNeha DhupiaNeena KulkarniMukta BarveShivani RaghuvanshiSandhya MhatreRama JoshiYashaswini DayamaPenata musikYash SahaiSkor Latar Belakang: Yash SahaiSinematograferSavita SinghPenyuntingSanjeev SachdevaPerusahaanproduksiElectric Apples EntertainmentDistributorRoyal Stag Barrel Select Large Short FilmsTanggal rilis 02 Maret 2020 (2020...

Die WWE Hall of Fame ist eine Ruhmeshalle im Wrestling, die ausgewählte Wrestler oder Mitarbeiter der WWE sowie weitere einflussreiche Personen aus dem Wrestling-Business auszeichnet. Stand 2021 wurden 216 Wrestling-Persönlichkeiten in die Hall of Fame aufgenommen und sieben Warrior Awards vergeben.[1] Inhaltsverzeichnis 1 Geschichte 2 Class of 1993 3 Class of 1994 4 Class of 1995 5 Class of 1996 6 Class of 2004 7 Class of 2005 8 Class of 2006 9 Class of 2007 10 Class of 2008 11 Cla...

 

Iranian footballer Zahra Khajavi Zahra Khajavi playing for Bam Khatoon F.C in the AFC Women's Club ChampionshipPersonal informationFull name Zahra KhajaviDate of birth (1999-02-08) 8 February 1999 (age 24)Place of birth NahavandHeight 1.73 m (5 ft 8 in)Position(s) GoalkeeperTeam informationCurrent team Bam Khatoon F.CYouth career Bam Khatoon F.CSenior career*Years Team Apps (Gls) Bam Khatoon F.C International career2018– Iran 1 (0) *Club domestic league appearances and g...

 

artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Artikel ini...

Political party in Turkey (1930) Liberal Republican Party Serbest Cumhuriyet FırkasıPresident and founderFethi OkyarGeneral SecretaryNuri ConkerFoundedAugust 12, 1930; 93 years ago (1930-08-12)DissolvedNovember 17, 1930; 93 years ago (1930-11-17)Split fromRepublican People's PartyHeadquartersAnkara, TurkeyIdeologyLiberalism[1]Liberal democracy[1]RepublicanismTurkish nationalismLaicismPolitical positionCentre-rightColours  Bl...

 

For other uses, see The Indestructibles (disambiguation). The Indestructibles (Ancient Egyptian: j.ḫmw-sk – literally the ones not knowing destruction[1][2]) was the name given by ancient Egyptian astronomers to two bright stars which, at that time, could always be seen circling the North Pole.[3] The name is directly related to Egyptian belief in constant North as a portal to heaven for pharaohs, and the stars' close association with eternity and the afterlife. ...

 

Pasarean Agung Asta Tinggi Kompleks Makam Raja-Raja SumenepPintu Gerbang utama Asta Induk dalam kompleks makam Asta Tinggi, bangunannya dipengaruhi oleh gaya arsitektur EropaInformasi umumLokasi Sumenep, Jawa TimurAlamatJalan Raya Asta Tinggi, Kebon Agung, Kota Sumenep Asta Tinggi adalah kawasan pemakaman khusus para Pembesar/Raja/Kerabat Raja yang teletak di kawasan dataran tinggi bukit Kebon Agung Sumenep. Dalam Bahasa Madura, Asta Tinggi disebut juga sebagai Asta Rajâ yang bermakna makam ...

South Korean actor (born 1968) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (February 2020) In this Korean name, the family name is Oh. Oh Dal-suBorn (1968-06-15) 15 June 1968 (age 55)Daegu, North Gyeongsang ProvinceOther namesOh Dal-sooEducationDong-eui University – Industrial DesignOccupationActorYears active1990–presentKore...

 

Cet article traite de l'épreuve féminine. Pour la compétition masculine, voir Tournoi masculin de beach-volley aux Jeux olympiques d'été de 2024. Articles principaux : Beach-volley aux Jeux olympiques d'été de 2024 et Beach-volley aux Jeux olympiques. Tournoi féminin debeach-volley aux Jeuxolympiques d'été de 2024 Généralités Sport Beach-volley Organisateur(s) CIO Édition 8e Lieu(x) Paris Date du 27 juillet au 9 août 2024 Participants 48 joueuses Site(s) Champ-de-Mars Site...

 

SS Soviet Union and SS Hansa (1923) redirect here. For other ships, see Soviet Union (disambiguation) and Hansa (disambiguation). This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (July 2009) (Learn how and when to remove this template message) SS Albert Ballin pulling in to port on September 27th 1923 History Weimar Republi...

PianiKecamatanPeta lokasi Kecamatan PianiNegara IndonesiaProvinsiKalimantan SelatanKabupatenTapinPemerintahan • CamatH.Jayadi Noor, S.ApPopulasi • Total5,372 jiwa (2.010) jiwaKode Kemendagri63.05.08 Kode BPS6305050 Luas131,24 km²Desa/kelurahan8/- Piani adalah sebuah kecamatan di Kabupaten Tapin, Kalimantan Selatan, Indonesia. Ibu kota kecamatan ini terletak di Miawa. Batas wilayah Batas-batas wilayah kecamatan Piani adalah sebagai berikut: Utara Kabupaten Hulu Su...

 

American soccer player (born 1993) Emily Sonnett Sonnett with the USWNT in 2019Personal informationFull name Emily Ann Sonnett[1]Date of birth (1993-11-25) November 25, 1993 (age 30)Place of birth Marietta, Georgia, U.S.Height 5 ft 7 in (1.70 m)Position(s) Defender, midfielderTeam informationCurrent team OL ReignNumber 2Youth career2003–2013 NASA 12 Elite IICollege careerYears Team Apps (Gls)2012–2015 Virginia Cavaliers 98 (6)Senior career*Years Team Apps (Gls)...

 

2001 video gameClive Barker's UndyingDeveloper(s)EA Los AngelesPublisher(s)EA GamesDirector(s)Brady BellProducer(s)Brady BellDesigner(s)Dellekamp SiefertProgrammer(s)J. Scott PeterArtist(s)Jeff HaynieBrian HortonWriter(s)Clive BarkerComposer(s)Bill BrownEngineUnreal Engine 1Platform(s)Microsoft WindowsMac OS XReleaseMicrosoft WindowsNA: February 21, 2001EU: March 16, 2001Mac OS XNA: June 11, 2002Genre(s)First-person shooterMode(s)Single-player Clive Barker's Undying is a horror first-person s...

Tulsky Oruzheiny ZavodIndustriPertahananDidirikan1712PendiriPyotr I dari RusiaKantorpusatTula, RusiaTokohkunciSergey Pariyskiy (CEO)[1]ProdukSenjata apiLaba bersih -9,913,000 Dolar AS (2009)[2]Total aset 11.334.000 Dolar AS (2009)[2]Karyawan3600 (Agustus 2010) [3]Situs webwww.tulatoz.ru Tula Arms Plant (atau Tulsky Oruzheiny Zavod; bahasa Rusia: Тульский оружейный завод) adalah perusahaan pembuat senjata asal Rusia yang didirikan oleh ...

 

1911 Australian filmIn the Nick of TimeSunday Times 3 Sept 1911Directed byAlfred RolfeProductioncompanyAustralian Photo-Play CompanyRelease date4 September 1911[1]Running time1,200 feetCountryAustraliaLanguagesSilent filmEnglish intertitles In the Nick of Time is a 1911 Australian silent film directed by Alfred Rolfe.[2] It was described as a sensational railway drama, although now is considered a lost film.[3][4] It featured a fight on the footboard of a train...

 

Vous lisez un « article de qualité » labellisé en 2016. L'Au-delà d'après le Livre des Morts du scribe Ani - Nouvel Empire - British Museum. Selon les mythes funéraires des Anciens Égyptiens, l’au-delà est le lieu où séjournent les dieux, les bienheureux et les damnés. Domaine d'Osiris, ce monde supranaturel est à la fois souterrain, terrestre et céleste. Il est connu sous les dénominations de Kheret-Netjer, Ro-Sétaou, Douât et Neferet Imentet (Bel Occident). La g...

Not to be confused with Dunbar Island. Dunbar IslandsLocation of Livingstone Island in the South Shetland IslandsDunbar IslandsLocation of Dunbar IslandsShow map of Antarctic PeninsulaDunbar IslandsDunbar Islands (Antarctica)Show map of AntarcticaGeographyLocationAntarcticaCoordinates62°28′10″S 60°10′40″W / 62.46944°S 60.17778°W / -62.46944; -60.17778ArchipelagoSouth Shetland IslandsAdministrationAdministered under the Antarctic Treaty SystemDemographicsPop...

 

Mughal Carpets India, Mughal, 18th century Textiles; carpets Cotton plain weave with silk chain stitch embroidery, wrapped metal thread with silk core, and silk quilting 112 3/4 x 44 3/4 in. (286.39 x 113.67 cm) From the Nasli and Alice Heeramaneck Collection, Museum Associates Purchase (M.79.9.6) Costume and Textiles Floor coverings during Mughal Empire Mughal carpets (Moghul or Mogul carpets) were the handwoven floor coverings used in the Mughal Empire in their courts. Mughal carpets and ru...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!