Isosbestic point

Isosbestic point in the bromocresol green spectrum. The spectra of basic, acid and intermediate pH solutions are shown. The analytical concentration of the dye is the same in all solutions.

In spectroscopy, an isosbestic point is a specific wavelength, wavenumber or frequency at which the total absorbance of a sample does not change during a chemical reaction or a physical change of the sample. The word derives from two Greek words: "iso", meaning "equal", and "sbestos", meaning "extinguishable".[1]

Isosbestic plot

When an isosbestic plot is constructed by the superposition of the absorption spectra of two species (whether by using molar absorptivity for the representation, or by using absorbance and keeping the same molar concentration for both species), the isosbestic point corresponds to a wavelength at which these spectra cross each other.

A pair of substances can have several isosbestic points in their spectra.

When a 1-to-1 (one mole of reactant gives one mole of product) chemical reaction (including equilibria) involves a pair of substances with an isosbestic point, the absorbance of the reaction mixture at this wavelength remains invariant, regardless of the extent of reaction (or the position of the chemical equilibrium). This occurs because the two substances absorb light of that specific wavelength to the same extent, and the analytical concentration remains constant.

For the reaction:

the analytical concentration is the same at any point in the reaction:

.

The absorbance of the reaction mixture (assuming it depends only on X and Y) is:

.

But at the isosbestic point, both molar absorptivities are the same:

.

Hence, the absorbance

does not depend on the extent of reaction (i.e., on the particular concentrations of X and Y)

The requirement for an isosbestic point to occur is that the two species involved are related linearly by stoichiometry, such that the absorbance is invariant at a certain wavelength. Thus, ratios other than 1-to-1 are possible. The presence of an isosbestic point typically indicates that only two species that vary in concentration contribute to the absorption around the isosbestic point. If a third one is partaking in the process, the spectra typically intersect at varying wavelengths as concentrations change, creating the impression that the isosbestic point is 'out of focus', or that it will shift as conditions change.[2] The reason for this is that it would be very unlikely for three compounds to have extinction coefficients linked in a linear relationship by chance for one particular wavelength.

Applications

The haemoglobin / oxyhaemoglobin system, measured through pulse oximetry, shows an isosbestic point near 808 nm
Following the photochemical cycloisomerization of a Cd complex of an A/D-seco-corrin to the corresponding metal-free corrin ligand by UV/VIS spectroscopy

In chemical kinetics, isosbestic points are used as reference points in the study of reaction rates, as the absorbance at those wavelengths remains constant throughout the whole reaction.[1]

Isosbestic points are used in medicine in a laboratory technique called oximetry to determine hemoglobin concentration, regardless of its saturation. Oxyhaemoglobin and deoxyhaemoglobin have (not exclusively) isosbestic points at 586 nm and near 808 nm.

Isosbestic points are also used in clinical chemistry, as a quality assurance method, to verify the accuracy in the wavelength of a spectrophotometer. This is done by measuring the spectra of a standard solution at two different pH conditions (above and below the pKa of the substance). The standards used include potassium dichromate (isosbestic points at 339 and 445 nm), bromothymol blue (325 and 498 nm) and congo red (541 nm). The wavelength of the isosbestic point determined does not depend on the concentration of the substance used, and so it becomes a very reliable reference.

One example of the use of isosbestic points in organic synthesis is seen in the photochemical A/D-corrin cycloisomerization ring closure reaction, which was the key step in the Eschenmoser / ETH Zürich vitamin B12 total synthesis.[3][4] The isosbestic points provide proof for a direct conversion of the seco-corrin complex to the metal-free corrin ligand without intermediary or side products (within the detection limits of UV/VIS spectroscopy).[3]

References

  1. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "isosbestic point". doi:10.1351/goldbook.I03310
  2. ^ page 49 of Kinetics and Mechanism By John W. Moore, Ralph G. Pearson and Arthur Atwater Frost (3rd Edition, John Wiley and Sons, 1981) ISBN 0-471-03558-0, ISBN 978-0-471-03558-9
  3. ^ a b Fuhrer, Walter (1973). Totalsynthese von Vitamin B12: Der photochemische Weg [Total Synthesis of Vitamin B12: The Photochemical Route] (PDF) (PhD) (in German). ETH Zürich (Promotionsarbeit Nr. 5158). doi:10.3929/ethz-a-000086601. hdl:20.500.11850/131362.
  4. ^ Eschenmoser, A.; Wintner, C. E. (1977). "Natural Product Synthesis and Vitamin B12: Total synthesis of vitamin B12 provided a framework for exploration in several areas of organic chemistry". Science. 196 (4297): 1410–1420. Bibcode:1977Sci...196.1410E. doi:10.1126/science.867037. PMID 867037.

Read other articles:

Malcolm MacDonald Malcolm John MacDonald (Lossiemouth/Moray, 17 januari 1901 – Raspit Hill/Kent, 11 januari 1981) was een Brits politicus van de Labour Party. Malcolm John MacDonald was de zoon van de voormalige Britse premier Ramsay MacDonald. Hij studeerde aan de Universiteit van Oxford. In 1929 werd hij gekozen tot parlementslid in het Lagerhuis. In 1931 werd MacDonald onder-staatssecretaris van het Ministerie voor Koloniën. In 1935 werd hij eerst staatssecretaris voor koloniën en verv...

 

Historical populationYearPop.±%152011,692,000—    156615,000,000+28.3%168330,000,000+100.0%183127,230,000−9.2%185635,350,000+29.8%1881–9317,388,000−50.8%190520,884,000+20.1%190620,975,345+0.4%191914,629,000−30.3% The demographics of the Ottoman Empire include population density, ethnicity, education level, religious affiliations and other aspects of the population. Lucy Mary Jane Garnett stated in the 1904 book Turkish Life in Town and Country, published in 1904...

 

Klaus Graf (* 15. Februar 1964 in Lauffen am Neckar) ist ein deutscher Jazzsaxophonist. Inhaltsverzeichnis 1 Leben 2 Projekte 2.1 Klaus Graf Jazzquartett 2.2 Timeless Art Orchestra 2.3 Salsafuerte 3 Auszeichnungen 4 Weblinks Leben Klaus Graf inmitten der SWR Big Band (erste Reihe, dritter Musiker von links) Graf war 1985 Mitglied im Jugendjazzorchester Baden-Württemberg (unter Leitung von Jiggs Whigham und Bernd Konrad) und gewann 1986 (mit der Band Cornichon) den ersten Preis beim Jugend Ja...

Japanese manga series Alive: The Final EvolutionFirst tankōbon volume coverアライブ 最終 進化的 少年(Araibu Saishū Shinkateki Shōnen)GenreHorror[1]Science fiction[1]Thriller[1] MangaWritten byTadashi KawashimaIllustrated byAdachitokaPublished byKodanshaEnglish publisherNA: Del Rey Manga (former, vol. 1–8)Kodansha USA (current, digital)MagazineMonthly Shōnen MagazineDemographicShōnenOriginal runApril 6, 2003 – February 6, 2010Volumes21...

 

Part of a series on theCanon law of theCatholic Church Ius vigens (current law) 1983 Code of Canon Law Omnium in mentem Magnum principium Code of Canons of the Eastern Churches Ad tuendam fidem Ex corde Ecclesiae Indulgentiarum Doctrina Praedicate evangelium Veritatis gaudium Custom Matrimonial nullity trial reforms of Pope Francis Documents of the Second Vatican Council Christus Dominus Lumen gentium Optatam totius Orientalium ecclesiarum Presbyterorum ordinis Sacrosanctum concilium Precepts...

 

Artikel utama: Pretender Pretender adalah seorang aspiran atau pengklaim sebuah tahta yang telah dibubarkan, ditunda atau diduduki oleh orang lain.[1] Istilah tersebut tidak sama dengan istilah penyaru, yang merujuk kepada seseorang yang melakukan penipuan dengan nama atau identitas yang lain.[2] Pretender dapat menuntut sebuah klaim dan istilah tersebut juga ditujukan kepada orang yang diberi klaim tersebut dari orang-orang lain, entah orang tersebut menerimanya atau tidak.&#...

Фридрих Саксен-Гильдбурггаузенскийнем. Friedrich von Sachsen-Hildburghausen герцог Саксен-Гильдбурггаузенский 23 сентября 1780 — 12 ноября 1826 Предшественник Эрнст Фридрих III герцог Саксен-Альтенбургский 12 ноября 1826 — 29 сентября 1834 Преемник Иосиф Рождение 29 апреля 1763(1763-04-29)[1]Хи...

 

1976 studio album by Rahsaan Roland KirkOther Folks' MusicStudio album by Rahsaan Roland KirkReleased1976RecordedMarch 1976GenreJazzLabelAtlanticProducerJoel DornRahsaan Roland Kirk chronology The Case of the 3 Sided Dream in Audio Color(1975) Other Folks' Music(1976) The Return of the 5000 Lb. Man(1976) Professional ratingsReview scoresSourceRatingAllMusic[1]The Penguin Guide to Jazz Recordings[3]The Rolling Stone Jazz Record Guide[2] Other Folks' Music is an ...

 

Склянка олд фешен традиційно вживається для подавання коктейлю олд фешен Олд фе́шен, олд фешн (англ. Old Fashioned glass) — низька широка склянка з товстим дном, що використовується для подавання віскі з льодом, а також коктейлю «олд фешн», за яким вона й отримала свою назву. Фор...

Rafael Rodríguez MéndezInformación personalNacimiento 1845 Granada (España) Fallecimiento 1919 Barcelona (España) Nacionalidad EspañolaFamiliaHijos Ángel Rodríguez Ruiz EducaciónEducación Doctor en Medicina Educado en Universidad de Granada Información profesionalOcupación Médico, político y profesor universitario Cargos ocupados Catedrático de universidadRector de la Universidad de Barcelona (1902-1905)Diputado de España por Barcelona (1905-1907) Empleador Universid...

 

Freight railroad in Pennsylvania United States historic placeMauch Chunk RailroadSummit Hill & Mauch Chunk RailroadMauch Chunk and Summit Hill Switchback RailroadU.S. National Register of Historic PlacesPennsylvania state historical marker Looking down at the Lehigh Canal in Jim Thorpe, Pennsylvania, c. 1870Show map of PennsylvaniaShow map of the United StatesLocationBetween Ludlow St. in Summit Hill and F.A.P. 209 in Jim Thorpe, Pennsylvania, U.S.Coordinates40°52′10″N 75°44...

 

زجاجة من ملح الثوم ملح الثوم هو ملح متبل مصنوع من خليط من ثوم مطحون ومجفف وملح مع مادة مكافحة للتكتل (مثل سيليكات الكالسيوم).[1] في أبسط أشكاله يتم تصنيعه من خلال الجمع بين 3 أجزاء من الملح مع جزء واحد من مسحوق الثوم حسب الحجم، أو 6 أجزاء من الملح وجزء واحد من مسحوق الثوم ...

Japanese manga series and franchise Mob Psycho 100First tankōbon volume cover, featuring Shigeo Kageyamaモブサイコ100(Mobu Saiko Hyaku)GenreAction[1]Comedy[1]Supernatural[1] MangaWritten byOnePublished byShogakukanEnglish publisherNA: Dark Horse ComicsImprintUra Sunday ComicsMagazineUra SundayMangaONEDemographicShōnenOriginal runApril 18, 2012 – December 22, 2017Volumes16 Anime television seriesDirected byYuzuru Tachikawa[a]Takahiro Hasu...

 

Animal that can eat and survive on both plants and animals This article is about the biological concept. For the record label, see Omnivore Recordings. Examples of omnivores. From left to right: humans,[1] dogs,[2] pigs, walking catfish, American crows, gravel ant Among birds the Hooded crow is a typical omnivore. An omnivore (/ˈɒmnɪvɔːr/) is an animal that has the ability to eat and survive on both plant and animal matter.[3] Obtaining energy and nutrients from p...

 

Archduke FelixBorn(1916-05-31)31 May 1916Schönbrunn Palace, Vienna, Austria-HungaryDied6 September 2011(2011-09-06) (aged 95)San Ángel, Mexico City, Mexico[1]BurialMuri Abbey, SwitzerlandSpousePrincess & Duchess Anna-Eugénie of ArenbergIssueMaria del PilarCarlos FelipeKingaRaimundMyriamIstvánViridisNamesFelix Friedrich August Maria vom Siege Franz Joseph Peter Karl Anton Robert Otto Pius Michael Benedikt Sebastian Ignatius Marcus d'AvianoHouseHabsburg-LorraineFatherCharle...

Hindi slogan used in 2019 Indian general election Logo for the campaign This article is part of a series aboutNarendra Modi Prime Minister of IndiaIncumbent Electoral history Public image Awards and honours Bibliography Chief Minister of Gujarat 2002 2007 2012 Gujarat Council of Ministers First Second Third Fourth Premiership 2014 campaign Achhe Din Aane Waale Hain 2019 campaign Main Bhi Chowkidar Swearing-in 2014 2019 Union Council of Ministers First Second Lok Sabha Sixteenth Seventeenth Ti...

 

Cameroonian artist (1977–2018) Ginette DaleuGinette Flore DaleuBorn(1977-09-23)September 23, 1977Metet, CameroonDiedNovember 9, 2018(2018-11-09) (aged 41)Known forCollage Ginette Daleu (born 23 September 1977; died 9 November 2018) was an artist from Cameroon. Biography Ginette Flore Daleu was born in 1977 at Metet in Cameroon.[1] She was a degree from the Institut de Formation Artistique in Mbalmayo[2] and graduated in 2000.[3] She also attended the Libera...

 

United States historic placeAllamuchy Freight HouseU.S. National Register of Historic PlacesNew Jersey Register of Historic Places Show map of Warren County, New JerseyShow map of New JerseyShow map of the United StatesLocationCounty Route 612, Allamuchy Township, New JerseyCoordinates40°55′55″N 74°49′13″W / 40.932057°N 74.820204°W / 40.932057; -74.820204Area1.3 acres (0.53 ha)Built1906 (1906)NRHP reference No.02001056[1]NJRHP...

Silverstein Shane Told, en un concierto de la banda en Milwaukee, EE. UU; el 11 de octubre de 2008Datos generalesOrigen Ontario, CanadáInformación artísticaGénero(s) Post-hardcore[1]​[2]​ • emo[3]​[4]​[5]​ • screamo[6]​ • indie rock[7]​ • hardcore punk[5]​Período de actividad 2000-presenteDiscográfica(s) Victory, Hopeless, Rise, UNFDWebSitio web silversteinmusic.comMiembros Shane ToldPaul Marc RousseauJosh BradfordBilly H...

 

جندي عالميUniversal Soldier (بالإنجليزية) معلومات عامةالصنف الفني حركة، فنون قتاليةتاريخ الصدور 1992مدة العرض 103 دقيقةاللغة الأصلية الإنجليزيةالبلد الولايات المتحدةموقع التصوير أريزونا الطاقمالمخرج رولان إيميريشالكاتب دين ديفلينالسيناريو دين ديفلين البطولة جين كلود فان دام، د...