Inverse Laplace transform

In mathematics, the inverse Laplace transform of a function is a real function that is piecewise-continuous, exponentially-restricted (that is, for some constants and ) and has the property:

where denotes the Laplace transform.

It can be proven that, if a function has the inverse Laplace transform , then is uniquely determined (considering functions which differ from each other only on a point set having Lebesgue measure zero as the same). This result was first proven by Mathias Lerch in 1903 and is known as Lerch's theorem.[1][2]

The Laplace transform and the inverse Laplace transform together have a number of properties that make them useful for analysing linear dynamical systems.

Mellin's inverse formula

An integral formula for the inverse Laplace transform, called the Mellin's inverse formula, the Bromwich integral, or the FourierMellin integral, is given by the line integral:

where the integration is done along the vertical line in the complex plane such that is greater than the real part of all singularities of and is bounded on the line, for example if the contour path is in the region of convergence. If all singularities are in the left half-plane, or is an entire function, then can be set to zero and the above inverse integral formula becomes identical to the inverse Fourier transform.

In practice, computing the complex integral can be done by using the Cauchy residue theorem.

Post's inversion formula

Post's inversion formula for Laplace transforms, named after Emil Post,[3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform.

The statement of the formula is as follows: Let be a continuous function on the interval of exponential order, i.e.

for some real number . Then for all , the Laplace transform for exists and is infinitely differentiable with respect to . Furthermore, if is the Laplace transform of , then the inverse Laplace transform of is given by

for , where is the -th derivative of with respect to .

As can be seen from the formula, the need to evaluate derivatives of arbitrarily high orders renders this formula impractical for most purposes.

With the advent of powerful personal computers, the main efforts to use this formula have come from dealing with approximations or asymptotic analysis of the Inverse Laplace transform, using the Grunwald–Letnikov differintegral to evaluate the derivatives.

Post's inversion has attracted interest due to the improvement in computational science and the fact that it is not necessary to know where the poles of lie, which make it possible to calculate the asymptotic behaviour for big using inverse Mellin transforms for several arithmetical functions related to the Riemann hypothesis.

Software tools

See also

References

  1. ^ Cohen, A. M. (2007). "Inversion Formulae and Practical Results". Numerical Methods for Laplace Transform Inversion. Numerical Methods and Algorithms. Vol. 5. pp. 23–44. doi:10.1007/978-0-387-68855-8_2. ISBN 978-0-387-28261-9.
  2. ^ Lerch, M. (1903). "Sur un point de la théorie des fonctions génératrices d'Abel". Acta Mathematica. 27: 339–351. doi:10.1007/BF02421315. hdl:10338.dmlcz/501554.
  3. ^ Post, Emil L. (1930). "Generalized differentiation". Transactions of the American Mathematical Society. 32 (4): 723–781. doi:10.1090/S0002-9947-1930-1501560-X. ISSN 0002-9947.
  4. ^ Abate, J.; Valkó, P. P. (2004). "Multi-precision Laplace transform inversion". International Journal for Numerical Methods in Engineering. 60 (5): 979. Bibcode:2004IJNME..60..979A. doi:10.1002/nme.995. S2CID 119889438.

Further reading

This article incorporates material from Mellin's inverse formula on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

Dillingen an der Donau Jl. Raja Lambang kebesaranLetak Dillingen an der Donau NegaraJermanNegara bagianBayernWilayahSchwabenKreisDillingenPemerintahan • MayorFrank Kunz (CSU)Luas • Total75,59 km2 (2,919 sq mi)Ketinggian422 m (1,385 ft)Populasi (2013-12-31)[1] • Total18.082 • Kepadatan2,4/km2 (6,2/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos89407Kode area telepon09071Pelat kendaraanDLGSitus webwww.dillin...

 

Species of mammal Not to be confused with the closely related Himalayan serow, sometimes called the thar. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tahr – news · newspapers · books · scholar · JSTOR (October 2013) (Learn how and when to remove this template message) Tahr Himalayan tahr Scientific class...

 

У этого топонима есть и другие значения, см. Ходосы. АгрогородокХодосыбелор. Ходасы 53°55′38″ с. ш. 31°28′48″ в. д.HGЯO Страна  Белоруссия Область Могилёвская Район Мстиславский Сельсовет Ходосовский История и география Высота НУМ 202 м Часовой пояс UTC+3:00 Население ...

Lebanon Template‑class Lebanon portalThis template is within the scope of WikiProject Lebanon, a collaborative effort to improve the coverage of Lebanon-related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.LebanonWikipedia:WikiProject LebanonTemplate:WikiProject LebanonLebanon articlesTemplateThis template does not require a rating on Wikipedia's content assessment scale. Palestine Temp...

 

Shalom SimhonLahir7 Desember 1956 (umur 66)Tempat lahirKfar Saba, IsraelKnesset14, 15, 16, 17, 18Faksi yang diwakili di Knesset1996–1999Partai Buruh1999–2001One Israel2001–2011Partai Buruh2011–2013IndependenceJabatan menteri2001–2002Menteri Pertanian2005Menteri Lingkungan Hidup2006–2011Menteri Pertanian2011–2013Menteri Industri, Perdagangan & Buruh2011–2013Menteri Minoritas Shalom Simhon (Ibrani: שלום שמחון, lahir 7 Desember 1956) adalah seorang politikus...

 

De Hopediamant zoals deze wordt tentoongesteld in het Nationaal natuurhistorisch museum De Hopediamant is een diepblauwe diamant die wordt tentoongesteld in het National Museum of Natural History van het Smithsonian Institution te Washington DC. Hij heeft een briljant blauwe kleur die wordt veroorzaakt door sporen van het element boor. Onder ultraviolet licht treedt er rode fluorescentie op waardoor de diamant is geclassificeerd als een diamant van het type IIb. De diamant zou zijn bezitter o...

Helen Levitt (* 31. August 1913 in Brooklyn, New York City; † 29. März 2009 ebenda) war eine US-amerikanische Fotografin und Filmemacherin. Sie zählte zu den wichtigsten Vertretern der New Yorker Street Photography. Ihre bevorzugten Motive waren Kinder, die auf der Straße spielen, und das Alltagsleben in den Straßen der ärmeren Stadtviertel. Inhaltsverzeichnis 1 Leben und Werk 2 Daten ihrer Karriere 3 Werke (Auszug) 4 Filmografie 5 Siehe auch 6 Literatur 7 Weblinks Leben und Werk Fotoa...

 

Cheiro, da Alegoria dos Sentidos de Jan Brueghel, o Velho, Museu do Prado Um odor é causado por um ou mais compostos químicos volatilizados que geralmente são encontrados em baixas concentrações que humanos e muitos animais podem perceber através do olfato. Um odor também é chamado de “cheiro” ou “perfume”, que pode se referir a um odor agradável ou desagradável. Embora odor e cheiro possam se referir a odores agradáveis ​​e desagradáveis, os termos perfume, aroma e fr...

 

Міський лікартур. Kasaba Doktoru Тип телесеріалТелеканал(и) TRT 1Жанр медицина драма мелодрамаТривалість серії 2 годиниТривалість 135 хв.Компанія ARC ProductionСценарист Ількер Аслан Бариш Ердоган Рахсан Чигдем ІнанРежисер Арда СаригунНа основі  Південна Корея Романтичний ліка

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Untuk kegunaan lain, lihat Ali Akbar Khan (disambiguasi). Ali Akbar KhanInformasi latar belakangLahir(1922-04-14)14 April 1922AsalComilla, Bengal Timur (sekarang Bangladesh)Meninggal18 Juni 2009(2009-06-18) (umur 87)San Anselmo, California, Amerika SerikatGenreMusik klasik HindustaniPekerjaanKomponis, SarodiyaInst...

 

David IIPenggambaran David II, karya Sylvester Harding (diterbitkan pada 1797) —[1]Raja SkotlandiaBerkuasa7 Juni 1329 – 22 Februari 1371Penobatan24 November 1331PendahuluRobert IPenerusRobert IIInformasi pribadiKelahiran(1324-03-05)5 Maret 1324Pertapaan Dunfermline, FifeKematian22 Februari 1371(1371-02-22) (umur 46)Kastel EdinburghPemakamanIstana HolyroodWangsaBruceAyahRobert I dari SkotlandiaIbuElizabeth de BurghPasanganJoan dari Inggris Margaret Drummond David ...

 

American actress (1906–1987) Mary AstorAstor in 1933BornLucile Vasconcellos Langhanke(1906-05-03)May 3, 1906Quincy, Illinois, U.S.DiedSeptember 25, 1987(1987-09-25) (aged 81)Los Angeles, California, U.S.Resting placeHoly Cross CemeteryOccupationActressYears active1921–1964Political partyDemocraticSpouses Kenneth Hawks ​ ​(m. 1928; died 1930)​ Franklyn Thorpe ​ ​(m. 1931; div. 1935)​ M...

Ujian Standar Bahasa Tionghoa HSK Logo Hanzi sederhana: 汉语水平考试 Hanzi tradisional: 漢語水平考試 Alih aksara Mandarin - Hanyu Pinyin: Hànyǔ Shuǐpíng Kǎoshì - Wade-Giles: Han⁴-yü³ Shui³-pʻing² Kʻao³-shih⁴ - Romanisasi Yale: Hànyǔ Shweǐpíng Kǎushr̀ Min Nan - Romanisasi POJ: Hàn-gú Chúi-pêng Khó-chhì Yue (Kantonis) - Romanisasi Yale: hon yúh seuí pìhng háau si - Jyutping: hon3 jyu5 seoi2 ping4 haau2 si3 Hànyǔ Shuǐpíng Kǎoshì (HSK) (Hanzi:...

 

English musician (born 1950) This article is about the musician. For other uses, see Peter Gabriel (disambiguation). Peter GabrielGabriel in Denver, October 2023Background informationBirth namePeter Brian GabrielBorn (1950-02-13) 13 February 1950 (age 73)Chobham, Surrey, EnglandGenresProgressive rockart rockart popworldbeatpost-progressiveprogressive soulOccupation(s)Singersongwriterrecord produceractivistInstrument(s)VocalskeyboardsfluteYears active1965–presentLabelsAtcoAtlanticGeffen...

 

Naum BirmanBornNaum Borisovich Birman(1924-05-19)19 May 1924LeningradDied19 September 1989(1989-09-19) (aged 65)LeningradResting placeMemorial Cemetery, Leningrad OblastYears active1965–1989Notable workThree Men in a Boat (1979)Children2 Naum Borisovich Birman (Russian: Нау́м Бори́сович Би́рман; 1924—1989) was a Soviet director of theater and cinema, screenwriter. Cavalier of the Order of Friendship of Peoples (1986).[1] He worked as an actor and di...

ESP Thuistenue Uittenue Spanje was een van de deelnemende landen aan het wereldkampioenschap voetbal 2014 in Brazilië. Het was de veertiende deelname voor het land. Vicente del Bosque nam als bondscoach voor de tweede keer deel aan het WK. Spanje werd als titelverdediger in de eerste ronde uitgeschakeld na nederlagen tegen Nederland (1-5) en Chili (0-2), en een zege tegen Australië (3-0). Kwalificatie Pedro was bij Spanje een van de uitblinkers met 4 doelpunten en twee assists. Spanje werd ...

 

SarcopterygiiRentang fosil: 418–0 jtyl PreЄ Є O S D C P T J K Pg N Late Silurian – Recent Coelacanth, Latimeria chalumnae Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Subfilum: Vertebrata Infrafilum: Gnathostomata Superkelas: Osteichthyes Kelas: Sarcopterygii Subkelas Coelacanthimorpha — Ikan raja laut (Coelacanth) Dipnoi — Ikan lempung (lungfish) Tetrapodomorpha — Tetrapoda dan kerabatnya yang telah punah Sarcopterygii - Crossopterygii merupakan ke...

 

Bandar Udara HeathrowIATA: LHRICAO: EGLLWMO: 03772InformasiJenisPublikPemilikHeathrow Airport HoldingsPengelolaHeathrow Airport LimitedMelayaniLondon, InggrisLokasiDekat Longford di borough Hillingdon, LondonMaskapai penghubung British Airways Maskapai utama Virgin Atlantic Ketinggian dpl mdplKoordinat51°28′39″N 000°27′41″W / 51.47750°N 0.46139°W / 51.47750; -0.46139Koordinat: 51°28′39″N 000°27′41″W / 51.47750°N 0.46139...

Cet article est une ébauche concernant le jeu vidéo. Vous pouvez partager vos connaissances en l’améliorant (comment ?) (voir l’aide à la rédaction). CastlevaniaLords of ShadowMirror of FateDéveloppeur MercurySteamÉditeur KonamiDistributeur NintendoRéalisateur Jose Luis MárquezScénariste Dave CoxJose Luis MárquezCompositeur Óscar AraujoProducteur Dave CoxDate de sortie Nintendo 3DSAN : 5 mars 2013EUR : 8 mars 2013JAP : 20 mars 2013 Xbox 360INT : 25 oct...

 

2009 single by Wale featuring Lady GagaChillinSingle by Wale featuring Lady Gagafrom the album Attention Deficit ReleasedApril 14, 2009Recorded2009StudioAllido (New York City)Genre Hip hop electro-funk Length3:24LabelAllidoSongwriter(s) Olubowale Akintimehin Gary De Carlo Dale Frashuer Stefani Germanotta Roy C Hammond Paul Leka Andre Christopher Lyon Makeba Riddick Kirk Robinson Marcello Valenzano Producer(s)Cool & DreWale singles chronology Change (2009) Chillin (2009) World Tour (20...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!