In vivo bioreactor

The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product.  

Overview

Conceptually, the in vivo bioreactor was borne from complications in a repair method of bone fracture, bone loss, necrosis, and tumor reconstruction known as bone grafting. Traditional bone grafting strategies require fresh, autologous bone harvested from the iliac crest; this harvest site is limited by the amount of bone that can safely be removed, as well as associated pain and morbidity.[1] Other methods include cadaverous allografts and synthetic options (often made of hydroxyapatite) that have become available in recent years. In response to the question of limited bone sourcing, it has been posited that bone can be grown to fit a damaged region within the body through the application of tissue engineering principles.[2]

Tissue engineering is a biomedical engineering discipline that combines biology, chemistry, and engineering to design neotissue (newly formed tissue) on a scaffold.[3] Tissues scaffolds are functionally identical to the extracellular matrix found, acting as a site upon which regenerative cellular components adsorb to encourage cellular growth.[4] This cellular growth is then artificially stimulated by additive growth factors in the environment that encourage tissue formation. The scaffold is often seeded with stem cells and growth additives to encourage a smooth transition from cells to tissues, and more recently, organs. Traditionally, this method of tissue engineering is performed in vitro, where scaffold components and environmental manipulation recreate in vivo stimuli that direct growth. Environmental manipulation includes changes in physical stimulation, pH, potential gradients, cytokine gradients, and oxygen concentration.[5] The overarching goal of in vitro tissue engineering is to create a functional tissue that is equivalent to native tissue in terms of composition, biomechanical properties, and physiological performance.[6] However, in vitro tissue engineering suffers from a limited ability to mimic in vitro conditions, often leading to inadequate tissue substitutes. Therefore, in vivo tissue engineering has been suggested as a method to circumvent the tedium of environmental manipulation and use native in vivo stimuli to direct cell growth. To achieve in vivo tissue growth, an artificial bioreactor space must be established in which cells may grow. The in vivo bioreactor depends on harnessing the reparative qualities of the body to recruit stem cells into an implanted scaffold, and utilize vasculature to supply all necessary growth components.

Design

Cells

Tissue engineering done in vivo is capable of recruiting local cellular populations into a bioreactor space.[2][7] Indeed a range of neotissue growth has been shown: bone, cartilage, fat, and muscle.[7][8][9][10] In theory, any tissue type could be grown in this manner if all necessary components (growth factors, environmental and physical ques) are met. Recruitment of stem cells require a complex process of mobilization from their niche,[11] though research suggests that mature cells transplanted upon the bioreactor scaffold can improve stem cell recruitment.[12][13][14] These cells secrete growth factors that promote repair and can be co-cultured with stem cells to improve tissue formation.

Scaffolds

Scaffold materials are designed to enhance tissue formation through control of the local and surrounding environments.[15][16][17] Scaffolds are critical in regulating cellular growth and provide a volume in which vascularization and stem cell differentiation can occur.[18] Scaffold geometry significantly affects tissue differentiation through physical growth ques. Predicting tissue formation computationally requires theories that link physical growth ques to cell differentiation. Current models rely on mechano-regulation theory, widely shaped by Prendergast et al. for predicting cell growth.[19] Thus a quantitative analysis of geometry and materials commonly used in tissue scaffolds is capable.

Such materials include:

Bioreactors

Methods

Initially, focusing on bone growth, subcutaneous pockets were used for bone prefabrication as a simple in vivo bioreactor model. The pocket is an artificially created space between varying levels of subcutaneous fascia. The location provides regenerative ques to the bioreactor implant but does not rely on pre-existing bone tissue as a substrate. Furthermore, these bioreactors may be wrapped with muscle tissue to encourage vascularization and bone growth. Another strategy is through the use of a periosteal flap wrapped around the bioreactor, or the scaffold itself to create an in vivo bioreactor. This strategy utilizes the guided bone regeneration treatment scheme, and is a safe method for bone prefabrication. These 'flap' methods of packing the bioreactor within fascia, or wrapping it in tissue is effective, though somewhat random due to the non-directed vascularization these methods incur. The axial vascular bundle (AVB) strategy requires that an artery and vein are inserted in an in vitro bioreactor to transport growth factors, cells, and remove waste. This ultimately results in extensive vascularization of the bioreactor space and a vast improvement in growth capability. This vascularization, though effective, is limited by the surface contact that it can achieve between the scaffold and the capillaries filling the bioreactor space. Thus, a combination of the flap and AVB techniques can maximize the growth rate and vascular contact of the bioreactor as suggested by Han and Dai, by inserting a vascular bundle into a scaffold wrapped in either musculature or periosteum.[28] If inadequate pre-existing vasculature is present in the growth site due to damage or disease, an arteriovenous loop (AVL) can be used. The AVL strategy requires a surgical connection be made between an artery of vein to form an arteriovenous fistula which is then placed within an in vitro bioreactor space containing a scaffold. A capillary network will form from this loop and accelerate the vascularization of new tissue.[29]

Materials

Materials used in the construction of an in vivo bioreactor space vary widely depending on the type of substrate, type of tissue, and mechanical demands of said tissue being grown. At its simplest, a bioreactor space will be created between tissue layers through the use of hydrogel injections to create a bioreactor space. Early models used an impermeable silicone shroud to encase a scaffold,[6] though more recent studies have begun 3D printing custom bioreactor molds to further enhance the mechanical growth properties of the bioreactors. The choice of bioreactor chamber material generally requires that it is nontoxic and medical grade, examples include: "silicon, polycarbonate, and acrylic polymer".[27] Recently both Teflon and titanium have been used in the growth of bone.[27] One study utilized Polymethyl methacrylate as a chamber material and 3D printed hollow rectangular blocks.[30] Yet another study pushed the limits of the in vivo bioreactor by proving that the omentum is suitable as a bioreactor space and chamber. Specifically, highly vascularized and functional bladder tissue was grown within the omentum space.[31]

Examples

An example of the implementation of the IVB approach was in the engineering of autologous bone by injecting calcium alginate in a sub-periosteal location.[32][33] The periosteum is a membrane that covers the long bones, jawbone, ribs and the skull. This membrane contains an endogenous population of pluripotent cells called the periosteal cells, which are a type of mesenchymal stem cells (MSC), which reside in the cambium layer, i.e., the side facing the bone. A key step in the procedure is the elevation of the periosteum without damaging the cambium surface and to ensure this a new technique called hydraulic elevation was developed.[34]

The choice of the sub-periosteum site is used because stimulation of the cambium layer using transforming growth factor–beta resulted in enhanced chondrogenesis, i.e., formation of cartilage. In development the formation of bone can either occur via a Cartilage template initially formed by the MSCs that then gets ossified through a process called endochondral ossification or directly from MSC differentiation to bone via a process termed intra-membranous ossification. Upon exposure of the periosteal cells to calcium from the alginate gel, these cells become bone cells and start producing bone matrix through the intra-membranous ossification process, recapitulating all steps of bone matrix deposition. The extension of the IVB paradigm to engineering autologous hyaline cartilage was also recently demonstrated.[35] In this case, agarose is injected and this triggers local hypoxia, which then results in the differentiation of the periosteal MSCs into articular chondrocytes, i.e. cells similar to those found in the joint cartilage. Since this processes occurs in a relative short period of less than two weeks and cartilage can remodel into bone, this approach might provide some advantages in treatment of both cartilage and bone loss. The IVB concept needs to be however realized in humans and this is currently being undertaken.

See also

Further reading

  • Chantarawaratit P, Sangvanich P, Banlunara W, Soontornvipart K, Thunyakitpisal P (2014). "Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model". Journal of Periodontal Research. 49 (2): 164–178. doi:10.1111/jre.12090. PMID 23710575.
  • Bai M, Zhang T, Ling T, Zhou Z, Xie H, Zhang W, Wu H (2013). "Guided bone regeneration using acellular bovine pericardium in a rabbit mandibular model: in-vitro and in-vivo studies". Journal of Periodontal Research. 49 (4): 499–507. doi:10.1111/jre.12129. PMID 24024647.
  • Aberle T, Franke K, Rist E, Benz K, Schlosshauer B (2014). "Cell-Type Specific Four-Component Hydrogel". PLOS ONE. 9 (1): e86740. Bibcode:2014PLoSO...986740A. doi:10.1371/journal.pone.0086740. PMC 3903574. PMID 24475174.
  • Khanlari A, Suekama TC, Detamore MS, Gehrke SH (2014). "Mimicking the Extracellular Matrix: Tuning the Mechanical Properties of Chondroitin Sulfate Hydrogels by Copolymerization with Oligo (ethylene glycol) Diacrylates". MRS Proceedings. 1622: 13. doi:10.1557/opl.2013.1207.

References

  1. ^ Dusseldorp, Joseph Richard; Mobbs, Ralph J. (September 2009). "Iliac crest reconstruction to reduce donor-site morbidity: technical note". European Spine Journal. 18 (9): 1386–90. doi:10.1007/s00586-009-1108-4. PMC 2899541. PMID 19653014.
  2. ^ a b Sladkova, Martina; de Peppo, Giuseppe (2014-06-11). "Bioreactor Systems for Human Bone Tissue Engineering". Processes. 2 (2): 494–525. doi:10.3390/pr2020494. ISSN 2227-9717.
  3. ^ Ikada, Yoshito (2006-10-22). "Challenges in tissue engineering". Journal of the Royal Society Interface. 3 (10): 589–601. doi:10.1098/rsif.2006.0124. PMC 1664655. PMID 16971328.
  4. ^ Oragui, Emeka; Nannaparaju, Madhusudhan; Khan, Wasim S. (2011). "Suppl 2: The Role of Bioreactors in Tissue Engineering for Musculoskeletal Applications". The Open Orthopaedics Journal. 5: 267–70. doi:10.2174/1874325001105010267. PMC 3149843. PMID 21886691.
  5. ^ Badylak, Stephen F.; Nerem, Robert M. (2010-02-23). "Progress in tissue engineering and regenerative medicine". Proceedings of the National Academy of Sciences. 107 (8): 3285–3286. doi:10.1073/pnas.1000256107. ISSN 0027-8424. PMC 2840480. PMID 20181571.
  6. ^ a b Holt, Ginger E.; Halpern, Jennifer L.; Dovan, Thomas T.; Hamming, David; Schwartz, Herbert S. (2005). "Evolution of an in vivo bioreactor". Journal of Orthopaedic Research. 23 (4): 916–923. doi:10.1016/j.orthres.2004.10.005. ISSN 1554-527X. PMID 16023008. S2CID 44717897.
  7. ^ a b Stevens, M. M.; Marini, R. P.; Schaefer, D.; Aronson, J.; Langer, R.; Shastri, V. P. (2005-07-29). "In vivo engineering of organs: The bone bioreactor". Proceedings of the National Academy of Sciences. 102 (32): 11450–11455. Bibcode:2005PNAS..10211450S. doi:10.1073/pnas.0504705102. ISSN 0027-8424. PMC 1183576. PMID 16055556.
  8. ^ Moya, Monica L.; Cheng, Ming-Huei; Huang, Jung-Ju; Francis-Sedlak, Megan E.; Kao, Shu-wei; Opara, Emmanuel C.; Brey, Eric M. (April 2010). "The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering". Biomaterials. 31 (10): 2816–2826. doi:10.1016/j.biomaterials.2009.12.053. ISSN 0142-9612. PMC 2826798. PMID 20080298.
  9. ^ Scime, Anthony (2009). "Advances in myogenic cell transplantation and skeletal muscle tissue engineering". Frontiers in Bioscience. 14 (14): 3012–23. doi:10.2741/3431. ISSN 1093-9946. PMID 19273253.
  10. ^ Stillaert, F.B.; Di Bartolo, C.; Hunt, J.A.; Rhodes, N.P.; Tognana, E.; Monstrey, S.; Blondeel, P.N. (October 2008). "Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds". Biomaterials. 29 (29): 3953–3959. doi:10.1016/j.biomaterials.2008.06.005. hdl:1854/LU-433440. ISSN 0142-9612. PMID 18635258.
  11. ^ a b McCullen, Seth D; Chow, Andre GY; Stevens, Molly M (2011-10-01). "In vivo tissue engineering of musculoskeletal tissues". Current Opinion in Biotechnology. Tissue, cell and pathway engineering. 22 (5): 715–720. doi:10.1016/j.copbio.2011.05.001. ISSN 0958-1669. PMID 21646011.
  12. ^ Fong, Eliza L.S.; Chan, Casey K.; Goodman, Stuart B. (January 2011). "Stem cell homing in musculoskeletal injury". Biomaterials. 32 (2): 395–409. doi:10.1016/j.biomaterials.2010.08.101. ISSN 0142-9612. PMC 2991369. PMID 20933277.
  13. ^ da Silva Meirelles, Lindolfo; Caplan, Arnold I.; Nardi, Nance Beyer (September 2008). "In Search of the In Vivo Identity of Mesenchymal Stem Cells". Stem Cells. 26 (9): 2287–2299. doi:10.1634/stemcells.2007-1122. ISSN 1066-5099. PMID 18566331. S2CID 5908295.
  14. ^ Chen, Liwen; Tredget, Edward E.; Wu, Philip Y. G.; Wu, Yaojiong (2008-04-02). "Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing". PLOS ONE. 3 (4): e1886. Bibcode:2008PLoSO...3.1886C. doi:10.1371/journal.pone.0001886. ISSN 1932-6203. PMC 2270908. PMID 18382669.
  15. ^ Shastri, V. Prasad (2009-11-06). "In vivo Engineering of Tissues: Biological Considerations, Challenges, Strategies, and Future Directions". Advanced Materials. 21 (41): 3246–54. Bibcode:2009AdM....2190155S. doi:10.1002/adma.200990155. ISSN 0935-9648. PMID 20882495.
  16. ^ Place, Elsie S.; Evans, Nicholas D.; Stevens, Molly M. (June 2009). "Complexity in biomaterials for tissue engineering". Nature Materials. 8 (6): 457–470. Bibcode:2009NatMa...8..457P. doi:10.1038/nmat2441. ISSN 1476-1122. PMID 19458646.
  17. ^ Zhu, Junmin (June 2010). "Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering". Biomaterials. 31 (17): 4639–4656. doi:10.1016/j.biomaterials.2010.02.044. ISSN 0142-9612. PMC 2907908. PMID 20303169.
  18. ^ MUSCHLER, GEORGE F.; NAKAMOTO, CHIZU; GRIFFITH, LINDA G. (July 2004). "Engineering Principles of Clinical Cell-Based Tissue Engineering". The Journal of Bone and Joint Surgery, American Volume. 86 (7): 1541–1558. doi:10.2106/00004623-200407000-00029. ISSN 0021-9355. PMID 15252108.
  19. ^ Prendergast, P.J.; Huiskes, R.; Søballe, K. (June 1997). "Biophysical stimuli on cells during tissue differentiation at implant interfaces". Journal of Biomechanics. 30 (6): 539–548. doi:10.1016/s0021-9290(96)00140-6. hdl:2066/25371. ISSN 0021-9290. PMID 9165386. S2CID 28681922.
  20. ^ a b Oragui, Emeka; Nannaparaju, Madhusudhan; Khan, Wasim S (2011-07-28). "The Role of Bioreactors in Tissue Engineering for Musculoskeletal Applications". The Open Orthopaedics Journal. 5: 267–270. doi:10.2174/1874325001105010267. ISSN 1874-3250. PMC 3149843. PMID 21886691.
  21. ^ Thevenot, Paul T.; Nair, Ashwin M.; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping (May 2010). "The effect of incorporation of SDF-1α into PLGA scaffolds on stem cell recruitment and the inflammatory response". Biomaterials. 31 (14): 3997–4008. doi:10.1016/j.biomaterials.2010.01.144. ISSN 0142-9612. PMC 2838969. PMID 20185171.
  22. ^ Shen, Weiliang; Chen, Xiao; Chen, Jialin; Yin, Zi; Heng, Boon Chin; Chen, Weishan; Ouyang, Hong-Wei (October 2010). "The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration". Biomaterials. 31 (28): 7239–7249. doi:10.1016/j.biomaterials.2010.05.040. ISSN 0142-9612. PMID 20615544.
  23. ^ BADYLAK, S; FREYTES, D; GILBERT, T (January 2009). "Extracellular matrix as a biological scaffold material: Structure and function". Acta Biomaterialia. 5 (1): 1–13. doi:10.1016/j.actbio.2008.09.013. ISSN 1742-7061. PMID 18938117.
  24. ^ Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; de la Cruz, Monica Olvera; Stupp, Samuel I. (2010-06-13). "A self-assembly pathway to aligned monodomain gels". Nature Materials. 9 (7): 594–601. Bibcode:2010NatMa...9..594Z. doi:10.1038/nmat2778. ISSN 1476-1122. PMC 3084632. PMID 20543836.
  25. ^ Ustun Yaylaci, Seher; Sardan Ekiz, Melis; Arslan, Elif; Can, Nuray; Kilic, Erden; Ozkan, Huseyin; Orujalipoor, Ilghar; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O. (2016-01-13). "Supramolecular GAG-like Self-Assembled Glycopeptide Nanofibers Induce Chondrogenesis and Cartilage Regeneration". Biomacromolecules. 17 (2). American Chemical Society (ACS): 679–689. doi:10.1021/acs.biomac.5b01669. ISSN 1525-7797. PMID 26716910.
  26. ^ "PB33 Autologous in vitro cartilage. Engineering, characterization, application". Osteoarthritis and Cartilage. 9: S53–S54. September 2001. doi:10.1016/s1063-4584(01)80358-7. ISSN 1063-4584.
  27. ^ a b c d Yap, Kiryu K.; Yeoh, George C.; Morrison, Wayne A.; Mitchell, Geraldine M. (2018-10-01). "The Vascularised Chamber as an In Vivo Bioreactor". Trends in Biotechnology. 36 (10): 1011–1024. doi:10.1016/j.tibtech.2018.05.009. ISSN 0167-7799. PMID 29937050. S2CID 49407121.
  28. ^ Zhang, Haifeng; Mao, Xiyuan; Zhao, Danyang; Jiang, Wenbo; Du, Zijing; Li, Qingfeng; Jiang, Chaohua; Han, Dong (2017-11-10). "Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model". Scientific Reports. 7 (1): 15255. Bibcode:2017NatSR...715255Z. doi:10.1038/s41598-017-14923-7. ISSN 2045-2322. PMC 5681514. PMID 29127293.
  29. ^ Lokmic, Zerina; Stillaert, Filip; Morrison, Wayne A.; Thompson, Erik W.; Mitchell, Geraldine M. (February 2007). "An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct". FASEB Journal. 21 (2): 511–522. doi:10.1096/fj.06-6614com. hdl:1854/LU-742572. ISSN 1530-6860. PMID 17172640. S2CID 22730132.
  30. ^ Tatara, Alexander M.; Koons, Gerry L.; Watson, Emma; Piepergerdes, Trenton C.; Shah, Sarita R.; Smith, Brandon T.; Shum, Jonathan; Melville, James C.; Hanna, Issa A.; Demian, Nagi; Ho, Tang (2019-04-02). "Biomaterials-aided mandibular reconstruction using in vivo bioreactors". Proceedings of the National Academy of Sciences. 116 (14): 6954–6963. Bibcode:2019PNAS..116.6954T. doi:10.1073/pnas.1819246116. ISSN 0027-8424. PMC 6452741. PMID 30886100.
  31. ^ Baumert, Hervé; Simon, Pascal; Hekmati, Mehrak; Fromont, Gaëlle; Levy, Maryline; Balaton, André; Molinié, Vincent; Malavaud, Bernard (2007-09-01). "Development of a Seeded Scaffold in the Great Omentum: Feasibility of an in vivo Bioreactor for Bladder Tissue Engineering". European Urology. 52 (3): 884–892. doi:10.1016/j.eururo.2006.11.044. ISSN 0302-2838. PMID 17229515.
  32. ^ Stevens, Molly M.; Marini, Robert P.; Schaefer, Dirk; Aronson, Joshua; Langer, Robert; Shastri, V. Prasad (June 8, 2005). "In vivo engineering of organs: The bone bioreactor". Proceedings of the National Academy of Sciences, USA. 102 (32): 11450–11455. Bibcode:2005PNAS..10211450S. doi:10.1073/pnas.0504705102. PMC 1183576. PMID 16055556.
  33. ^ Service, Robert F. (29 July 2005). "Technique Uses Body as 'Bioreactor' to Grow New Bone". Science. 309 (5735): 683. doi:10.1126/science.309.5735.683a. PMID 16051759. S2CID 42416342.
  34. ^ Marini, Robert P.; Stevens, Molly M.; Langer, Robert; Shastri, V. Prasad (2004). "Hydraulic Elevation of the Periosteum: A Novel Technique for Periosteal Harvest". Journal of Investigative Surgery. 17 (4): 229–233. doi:10.1080/08941930490472073. PMID 15371165. S2CID 20122007.
  35. ^ Emans, Pieter J.; Lodewijk W. van Rhijn; Welting, Tim J. M.; Cremers, Andy; Wijnands, Nina; Spaapen, Frank; J. Voncken, Willem; Shastri, V. Prasad (January 7, 2010). "Autologous engineering of cartilage". Proceedings of the National Academy of Sciences, USA. 107 (8): 3418–3423. Bibcode:2010PNAS..107.3418E. doi:10.1073/pnas.0907774107. PMC 2840469. PMID 20133690.

Read other articles:

No. 681 Squadron RAFActive2 January 1943 – 1 August 1946Country United KingdomBranch Royal Air ForceRolephoto-reconnaissancePart ofNo. 221 Group RAF, RAF India Command[1] No. 231 Group RAF, Air Command South-East Asia[2] AHQ Burma, Air Command South-East Asia[3]InsigniaSquadron Badge heraldryNo badge known to have been authorised[4]Squadron CodesNo code(s) are known to have been carried by this squadron[4][5][6]Military unit No. 6...

 

Questa voce o sezione sull'argomento siti archeologici d'Italia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Questa voce sull'argomento siti archeologici d'Italia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Area archeologica di NotarchiricoCiviltàHomo erectus Epocada 600 000 a 300 000 LocalizzazioneStato...

 

Камінський Василь ЯковичНародився 29 грудня 1899(1899-12-29)Петроострів, Новомиргородський район, Кіровоградська область, Українська Радянська Соціалістична РеспублікаПомер 1941Май-Губаd, Ідельське сільське поселенняd, Сегежський районd, Карелія, РРФСР, СРСРКраїна  УНР Укра

Artikel ini bukan mengenai Bendungan. Bendung yang sering disalah artikan oleh orang awam sebagai bendungan Sebuah bendung di sungai Humber dekat Raymore Park, Toronto, Ontario Bendung di Bogor, Jawa Barat Bendung atau Tebat[1] adalah pembatas yang dibangun melintasi sungai yang dibangun untuk mengubah karakteristik aliran sungai. Dalam banyak kasus, bendung merupakan sebuah kontruksi yang jauh lebih kecil dari bendungan yang menyebabkan air menggenang membentuk kolam tetapi mampu mel...

 

أمبيرتيدي     الإحداثيات 43°18′20″N 12°20′12″E / 43.3056365°N 12.3366222°E / 43.3056365; 12.3366222[1]  [2] تقسيم إداري  البلد إيطاليا[3][4]  التقسيم الأعلى مقاطعة بِرُوجَة  خصائص جغرافية  المساحة 200.83 كيلومتر مربع (9 أكتوبر 2011)[5]  ارتفاع 247 متر  عدد ا...

 

Adrian Grbić Datos personalesNacimiento Viena4 de agosto de 1996 (27 años)País AustriaNacionalidad(es) AustriacaAltura 1,88 mPeso 82 kgCarrera deportivaDeporte FútbolClub profesionalDebut deportivo 2015(VfB Stuttgart II)Club F. C. LorientLiga Ligue 1Posición DelanteroGoles en clubes 55Selección nacionalSelección AustriaDebut 4 de septiembre de 2020Part. (goles) 9 (4)[editar datos en Wikidata] Adrian Grbić (Viena, 4 de agosto de 1996) es un futbolista austriaco...

Ehemaliger Kanton Aix-en-Provence-Centre Region Provence-Alpes-Côte d’Azur Département Bouches-du-Rhône Arrondissement Aix-en-Provence Auflösungsdatum 29. März 2015 Einwohner 41.361 (1. Jan. 2012) Gemeinden 1 INSEE-Code 1347 Der Kanton Aix-en-Provence-Centre war bis 2015 ein französischer Wahlkreis im Arrondissement Aix-en-Provence, im Département Bouches-du-Rhône und in der Region Provence-Alpes-Côte d’Azur. Die landesweiten Änderungen in der Zusammensetzung der Kanto...

 

Mit einer bedingungslosen Kapitulation räumt die Verliererpartei der Siegerpartei eines Krieges das Recht ein, alle politischen und gesellschaftlichen Angelegenheiten in ihrem Hoheitsgebiet zu regeln. Ein älterer Ausdruck dafür war die Formulierung sich auf Gnade oder Ungnade ergeben. Die Forderung nach bedingungsloser Kapitulation wirkt im Allgemeinen kriegsverlängernd, da sie Verhandlungen über einen vorzeitigen Waffenstillstand ausschließt, dessen Bedingungen, gemäß der Haager Land...

 

خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من كيه إم إل تصدير جميع الإحداثيات من جيو ر س س خريطة لجميع الإحداثيات الميكرو منسقة بيانات من إطار توصيف الموارد خريطة الإمارات العربية المتحدة إمارة دبي، أكثر مدن الإمارات سكاناً أبوظبي...

Scottish-Canadian doctor ProfessorGeorge Neil StewartBorn18 April 1860London, Canada WestDied28 May 1930Cleveland, OhioAlma materUniversity of EdinburghKnown forPhysiologySpouseLouise Kate Powell George Neil Stewart (18 April 1860 - 28 May 1930) was a Scottish-Canadian medical doctor who made a major contribution to teaching and research in physiology.[1] Early life George Neil Stewart was born in Canada at London, Canada West, the son of James Innes and Catherine Sutherland...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) غيليس بيسون   معلومات شخصية الميلاد 14 مايو 1957 (66 سنة)  تيمينز  مواطنة كندا  الحياة العملية المهنة سياسي،  وطيار  الحزب الحرب الديمقراطي الجديد...

 

Dutch music festival LowlandsThe characteristic chimneys of Lowlands 2019 in the ArmadiLLow area, accessible 24 hours a day during the festival weekend.DatesThird weekend of AugustLocation(s)Spijk en Bremerberg, Biddinghuizen, NetherlandsCoordinates52°25′58″N 5°45′55″E / 52.43278°N 5.76528°E / 52.43278; 5.76528Years active1993–presentFounded byMojo Concerts, Loc7000Attendance~55,000WebsiteOfficial website A Campingflight to Lowlands Paradise (commonly cal...

Экзопланета Kepler-442b в представлении художника. Может оказаться суперобитаемой. Суперобита́емая плане́та — гипотетический тип экзопланеты или экзолуны, который подходит для появления, эволюции и поддержания жизни больше, чем сама Земля. Понятие было введено в 2014 году ...

 

Disused railway station in Belford, Northumberland TwizellThe site of the station in 2011General informationLocationTwizell, NorthumberlandEnglandCoordinates55°41′14″N 2°11′53″W / 55.6871°N 2.198°W / 55.6871; -2.198Grid referenceNT876437Platforms2Other informationStatusDisusedHistoryOriginal companyNorth Eastern RailwayPre-groupingNorth Eastern RailwayPost-groupingLNER British Railways (Scottish Region)Key datesAugust 1861 (1861-08)Opened4 Ju...

 

Stage musicals based on video game of the same name Persona 3: The Weird MasqueradePromotional poster for Persona 3: The Weird Masquerade: Act 4 The Indigo PledgeMusicShoji MeguroMako KuwabaraLyricsShoji MeguroMakoto KimuraBasisPersona 3by AtlusPremiereJanuary 8, 2014: Theater G Rosso, Tokyo, JapanProductions 2014 Tokyo (Act I) 2014 Tokyo (Act II) 2015 Tokyo (Act III) 2017 Tokyo (Acts IV & V) Persona 3: The Weird Masquerade (舞台『PERSONA3 the Weird Masquerade』) is a series of stage ...

2007 studio album by Dannii MinogueClub DiscoStudio album by Dannii MinogueReleased5 November 2007Recorded2004–2007GenreDance-pophousediscoelectropopLength73:51 (digital edition) 73:09 (AU physical edition)LabelAll Around the WorldCentral StationProducerThriller JJake SchulzeRob DavisRoger SanchezLee MonteverdeJewels & StoneFlower PowerSoul SeekerzDannii Minogue chronology Unleashed(2007) Club Disco(2007) The Early Years(2008) Singles from Club Disco You Won't Forget About MeRel...

 

Lexus LS, GS, dan IS adibuat di Pabrik Tahara Pabrik Tahara (Jepang: 田原工場) adalah sebuah pabrik mobil di kawasan Tahara, Aichi, Jepang yang dimiliki oleh Toyota Motor Corporation. Pabrik ini merupakan pabrik berteknologi tinggi dengan penggunaan robot dan komputer yang canggih yang memproduksi berbagai mobil merk Lexus, beberapa diantaranya Lexus LS, Lexus LS Hybrid, Lexus GS, Lexus IS, Lexus GX, dan Lexus LX.[1] Beberapa produk Toyota, seperti Toyota RAV4 dan Toyota 4Runner j...

 

Village in Lorestan province, Iran For other places with the same name, see Kaleh Jub. Village in Lorestan, IranKalleh Jub Persian: كله جوبVillageKalleh JubCoordinates: 33°31′58″N 48°45′41″E / 33.53278°N 48.76139°E / 33.53278; 48.76139[1]Country IranProvinceLorestanCountyKhorramabadDistrictZaghehRural DistrictQaedrahmatPopulation (2016)[2] • Total649Time zoneUTC+3:30 (IRST) Kalleh Jub (Persian: كله جوب, also...

1968 US and ARVN military offensive in the Mekong Delta, as part of the Vietnam War Operation Truong Cong DinhPart of Vietnam WarAn Assault Air-Cushion Vehicle during the operation, 30 June 1968Date7 March - 7 August 1968LocationAround Mỹ Tho, South Vietnam (now Tiền Giang Province, Vietnam)Result Allied operational successBelligerents  United States South Vietnam Viet CongCommanders and leaders MG Julian Ewell Nguyễn Viết Thanh Units involved 1st and 2nd Brigades, 9th Infan...

 

Gabungan Rakyat Sabah Nama dalam bahasa MelayuGabungan Rakyat Sabah ݢابوڠن رعيت سابهNama dalam bahasa Mandarin沙巴人民聯盟沙巴人民联盟Sa-pa Jîn-bîn Liân-bêngSaa1 Baa1 Jan4 Man4 Lyun4 Mang4Shābā rénmín liánméngSingkatanGRS / Partai GRS[1]Ketua umumHajiji NoorWakil Ketua UmumMaximus OngkiliJeffrey KitinganYong Teck LeePendiriHajiji Noor (Resmi)[2]Dibentuk12 September 2020 (2020-09-12)[3]Didaftarkan26 Februari 2022 (2022-02-26...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!