Drug-induced hyperlocomotion can be reversed by various drugs, such as antipsychotics acting as dopamineD2 receptorantagonists.[1][3] Reversal of drug-induced hyperlocomotion has been used as an animal test of drug antipsychotic-like activity.[1][3]Amphetamines and NMDA receptor antagonists likewise induce stereotypies, and reversal of these stereotypies is also employed as a test of drug antipsychotic-like activity.[1][3]
Serotonin5-HT2A receptorantagonists like volinanserin (MDL-100907) counteract the hyperactivity induced by amphetamine, cocaine, and NMDA receptor antagonists in animals.[10][11][12] Certain non-selective serotonin 5-HT2A receptor antagonists, like trazodone, have been found to decrease locomotor and behavioral activity and to inhibit amphetamine-induced hyperactivity in animals similarly.[13][14][15][16][4] In addition to serotonin 5-HT2A receptor antagonists, serotonin 5-HT2A receptor biased agonists that selectively activate the β-arrestin pathway but not the Gq pathway, like 25N-N1-Nap, have been found to antagonize PCP-induced locomotor hyperactivity in rodents.[10]
Certain serotonin releasing agents, like MDMA and MDAI, though notably not others, like chlorphentermine, fenfluramine, and MMAI,[17][18][19] induce locomotor hyperactivity in animals.[20][21][22][23] This is dependent on serotonin release allowed for by the serotonin transporter (SERT) and serotonin 5-HT2B receptor.[24][21][22][25][26] SERT knockout, pretreatment with serotonin reuptake inhibitors (which block MDMA-induced SERT-mediated serotonin release), or serotonin 5-HT2B receptor knockout (which likewise blocks MDMA-induced serotonin release) all completely block MDMA-induced locomotor hyperactivity.[24][21][22][25][26] In addition, locomotor hyperactivity produced by MDMA is partially attenuated by serotonin 5-HT1B receptor antagonism (or knockout)[24][27][28] or by serotonin 5-HT2A receptor antagonism.[29][30][31] The locomotor hyperactivity produced by MDMA is fully attenuated by combined serotonin 5-HT1B and 5-HT2A receptor antagonism.[30] Conversely, the serotonin 5-HT1A receptor is not involved in MDMA-induced hyperlocomotion.[21] Serotonin 5-HT2C receptor activation appears to inhibit MDMA-induced hyperlocomotion and antagonism of this receptor has been reported to markedly enhance the locomotor hyperactivity induced by MDMA.[31][30][32][33] Activation of the serotonin 5-HT2C receptor is known to strongly inhibit dopamine release in the mesolimbic pathway as well as inhibit dopamine release in the nigrostriatal and mesocortical pathways.[34][35][31][36] The reasons for the differences in locomotor activity with different serotonin releasing agents are unclear.[31]
^ abcdTucker JC, File SE (1986). "The effects of tricyclic and 'atypical' antidepressants on spontaneous locomotor activity in rodents". Neurosci Biobehav Rev. 10 (2): 115–121. doi:10.1016/0149-7634(86)90022-9. PMID3737024.
^ abcNishino, Seiji; Kotorii, Nozomu (2016). "Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics". Narcolepsy. Cham: Springer International Publishing. pp. 307–329. doi:10.1007/978-3-319-23739-8_22. ISBN978-3-319-23738-1.
^ abcD'Aquila PS, Collu M, Gessa GL, Serra G (September 2000). "The role of dopamine in the mechanism of action of antidepressant drugs". Eur J Pharmacol. 405 (1–3): 365–373. doi:10.1016/s0014-2999(00)00566-5. PMID11033341.
^Ikemoto S, Panksepp J (December 1999). "The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking". Brain Res Brain Res Rev. 31 (1): 6–41. doi:10.1016/s0165-0173(99)00023-5. PMID10611493.
^Rampello, Liborio; Nicoletti, Ferdinando; Nicoletti, Francesco (2000). "Dopamine and Depression". CNS Drugs. 13 (1). Springer Science and Business Media LLC: 35–45. doi:10.2165/00023210-200013010-00004. ISSN1172-7047.
^File SE, Tucker JC (1986). "Behavioral consequences of antidepressant treatment in rodents". Neurosci Biobehav Rev. 10 (2): 123–134. doi:10.1016/0149-7634(86)90023-0. PMID3526203.
^Carlsson ML (1995). "The selective 5-HT2A receptor antagonist MDL 100,907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse--implications for psychosis". J Neural Transm Gen Sect. 100 (3): 225–237. doi:10.1007/BF01276460. PMID8748668.
^O'Neill MF, Heron-Maxwell CL, Shaw G (June 1999). "5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB". Pharmacol Biochem Behav. 63 (2): 237–243. doi:10.1016/s0091-3057(98)00240-8. PMID10371652.
^Ayd FJ, Settle EC (1982). "Trazodone: a novel, broad-spectrum antidepressant". Mod Probl Pharmacopsychiatry. Modern Trends in Pharmacopsychiatry. 18: 49–69. doi:10.1159/000406236. ISBN978-3-8055-3428-4. PMID6124884.
^Rothman RB, Baumann MH (August 2006). "Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs". Ann N Y Acad Sci. 1074: 245–260. doi:10.1196/annals.1369.064. PMID17105921.
^Callaway CW, Wing LL, Nichols DE, Geyer MA (1993). "Suppression of behavioral activity by norfenfluramine and related drugs in rats is not mediated by serotonin release". Psychopharmacology (Berl). 111 (2): 169–178. doi:10.1007/BF02245519. PMID7870948.
^Callaway, C. W.; Nichols, D. E.; Paulus, M. P.; Geyer, M. A. (1991). "Serotonin Release is Responsible for the Locomotor Hyperactivity in Rats Induced by Derivatives of Amphetamine Related to MDMA". Serotonin: Molecular Biology, Receptors and Functional Effects. Basel: Birkhäuser Basel. p. 491–505. doi:10.1007/978-3-0348-7259-1_49. ISBN978-3-0348-7261-4.
^ abcdStove CP, De Letter EA, Piette MH, Lambert WE (August 2010). "Mice in ecstasy: advanced animal models in the study of MDMA". Curr Pharm Biotechnol. 11 (5): 421–433. doi:10.2174/138920110791591508. PMID20420576.
^ abcAguilar MA, García-Pardo MP, Parrott AC (January 2020). "Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy')". Brain Res. 1727: 146556. doi:10.1016/j.brainres.2019.146556. PMID31734398.
^Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (March 2003). "Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine ("ecstasy") and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice". Psychopharmacology (Berl). 166 (3): 202–211. doi:10.1007/s00213-002-1261-5. PMID12563544.
^ abcMartinez-Price, Diana; Krebs-Thomson, Kirsten; Geyer, Mark (1 January 2002). "Behavioral Psychopharmacology of MDMA and MDMA-Like Drugs: A Review of Human and Animal Studies". Addiction Research & Theory. 10 (1). Informa UK Limited: 43–67. doi:10.1080/16066350290001704. ISSN1606-6359.
^ abFox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL (December 2007). "A pharmacological analysis of mice with a targeted disruption of the serotonin transporter". Psychopharmacology (Berl). 195 (2): 147–166. doi:10.1007/s00213-007-0910-0. PMID17712549.
^Scearce-Levie K, Viswanathan SS, Hen R (January 1999). "Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor". Psychopharmacology (Berl). 141 (2): 154–161. doi:10.1007/s002130050819. PMID9952039.
^Liechti ME, Vollenweider FX (December 2001). "Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies". Hum Psychopharmacol. 16 (8): 589–598. doi:10.1002/hup.348. PMID12404538.
^ abcBankson MG, Cunningham KA (January 2002). "Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT(1B/1D) and 5-HT(2) receptors". Neuropsychopharmacology. 26 (1): 40–52. doi:10.1016/S0893-133X(01)00345-1. PMID11751031.
^Conductier G, Crosson C, Hen R, Bockaert J, Compan V (June 2005). "3,4-N-methlenedioxymethamphetamine-induced hypophagia is maintained in 5-HT1B receptor knockout mice, but suppressed by the 5-HT2C receptor antagonist RS102221". Neuropsychopharmacology. 30 (6): 1056–1063. doi:10.1038/sj.npp.1300662. PMID15668722.
^Ball KT, Rebec GV (October 2005). "Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats". Psychopharmacology (Berl). 181 (4): 676–687. doi:10.1007/s00213-005-0038-z. PMID16001122.
^Rothman RB, Blough BE, Baumann MH (2008). "Dopamine/serotonin releasers as medications for stimulant addictions". Prog Brain Res. 172: 385–406. doi:10.1016/S0079-6123(08)00919-9. PMID18772043.
^Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV (January 2019). "Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models". ACS Chem Neurosci. 10 (1): 143–154. doi:10.1021/acschemneuro.8b00433. PMID30252437.
^Lakstygal AM, Kolesnikova TO, Khatsko SL, Zabegalov KN, Volgin AD, Demin KA, Shevyrin VA, Wappler-Guzzetta EA, Kalueff AV (May 2019). "DARK Classics in Chemical Neuroscience: Atropine, Scopolamine, and Other Anticholinergic Deliriant Hallucinogens". ACS Chem Neurosci. 10 (5): 2144–2159. doi:10.1021/acschemneuro.8b00615. PMID30566832.