Human metapneumovirus

Human metapneumovirus
Human metapneumovirus (hMPV) structure and genome
Virus classification Edit this classification
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Monjiviricetes
Order: Mononegavirales
Family: Pneumoviridae
Genus: Metapneumovirus
Species:
Human metapneumovirus

Human metapneumovirus (HMPV or hMPV) is a negative-sense single-stranded RNA virus of the family Pneumoviridae[1] and is closely related to the Avian metapneumovirus (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using the RAP-PCR (RNA arbitrarily primed PCR) technique for identification of unknown viruses growing in cultured cells.[2] As of 2016, it was the second most common cause (after respiratory syncytial virus (RSV)) of acute respiratory tract illness in otherwise-healthy children under the age of 5 in a large US outpatient clinic.[3]

The peak age of hospitalization for infants with HMPV occurs between 6–12 months of age, slightly older than the peak of RSV, which is around 2–3 months. The clinical features and severity of HMPV are similar to those of RSV. HMPV is also an important cause of disease in older adults. A notable outbreak of HMPV has been observed through the end of 2024 in North East Asia. [4]

Taxonomy

Genus Metapneumovirus: species and their viruses[1][5]
Genus Species Virus (abbreviation) NCBI taxonomy ID
Metapneumovirus Avian metapneumovirus avian metapneumovirus (AMPV) 38525
Human metapneumovirus human metapneumovirus (HMPV) 162145

Discovery and naming

Human metapneumovirus was first discovered in 2001 in the Netherlands by Bernadette G. van den Hoogen and her colleagues.[6][7][8][9] HMPV was first detected in the respiratory secretions of 28 young children in the Netherlands and had initially stood out from other common respiratory viruses because the testing methods van den Hoogen et al. had tried using (immunological assays using virus-specific antibodies and PCR-based methods using virus genome-specific primers) were only able to test for known respiratory viruses and, therefore, were unable to identify the novel virus.[6] It was not until researchers began applying molecular biology techniques that the genetic characteristics and portions of the genomic sequences of the virus could be identified; these techniques included the randomly primed PCR technique which obtained the limited sequence data needed to reveal a clear relationship between this new virus and the avian pneumovirus.[6] It was this close relationship to AMPV that gave rise to this new virus being named human metapneumovirus[6] to reflect both its identity as a metapneumovirus and its use of humans as a host organism.

Epidemiology

HMPV was responsible for 12% of cases of acute respiratory tract illness in otherwise-healthy children in a US outpatient clinic[3] and 15% and 8% of cases (respectively) of community-acquired pneumonia requiring hospitalization in children under and over the age of 5 in the United States.[10] The virus is distributed worldwide and, in temperate regions, has a seasonal distribution generally following that of RSV and influenza virus during late winter and spring.[3][11] Serologic studies have shown that by the age of five, virtually all children worldwide have been exposed to the virus.[2][12][13][14] Despite near universal infection during early life, reinfections are common in older children and adults.[3][15][13][16] Human metapneumovirus may cause mild upper respiratory tract infection (the common cold). However, premature infants,[17] immunocompromised persons,[18][19][20][21] and older adults >65 years [16][22][23] are at risk for severe disease and hospitalization. In some studies of hospitalizations and emergency room visits, HMPV is nearly as common and as severe as influenza in older adults.[16][22][23][24] HMPV is associated with more severe disease in people with asthma[25][26][27][28] and adults with chronic obstructive pulmonary disease (COPD).[29][30][31] Numerous outbreaks of HMPV have been reported in long-term care facilities for children and adults, causing fatalities.[32][33][34][35][36]

Genome

The genomic organisation of HMPV is similar to RSV; however, HMPV lacks the non-structural genes, NS1 and NS2, and the HMPV antisense RNA genome contains eight open reading frames in slightly different gene order than RSV (viz. 3’-N-P-M-F-M2-SH-G-L-5’).[37] HMPV is genetically similar to the avian metapneumoviruses A, B and in particular type C. Phylogenetic analysis of HMPV has demonstrated the existence of two main genetic lineages termed subtype A and B containing within them the subgroups A1/A2 and B1/B2 respectively. Genotyping based on sequences of the F and G genes showed that subtype B was associated with increased cough duration and increased general respiratory systems compared to HMPV-A.[38]

Life cycle and reproduction

hMPV is estimated to have a 3–6 day incubation period and is often most active during the later winter and spring seasons in temperate climates, overlapping with the RSV and influenza seasons and possibly allowing for repeated infection.[7] But because it is still a relatively new virus and has not yet been researched very heavily, hMPV and its replication cycle still have a lot of mystery surrounding them. However, researchers have been able to elucidate some principal steps of hMPV's replication cycle, basing their approach and experimentation on the current knowledge we have of the viral life cycles and reproductive measures of the rest of the Paramyxoviridae family.[39]

With that being said, it has been determined that the first step of the hMPV replication cycle is attachment to the host cell, specifically the epithelial cells of the respiratory tract, using the G protein.[9][39] This G protein contains a hydrophobic region that acts as an uncleaved signal peptide and a membrane anchor to facilitate its binding; however, because recombinant viruses that lack the G protein have still been able to replicate in vitro and in vivo, it seems that attachment via the G protein is not required for rest of the replication cycle.[9]

Next in the cycle is the fusion of the viral and host membranes which is likely mediated by the F protein.[9][39] Though the fusion mechanism is very similar to that of other Paramyxoviridae family members and involves conformational changes of the F protein, the mechanism for hMPV does not depend on the G protein for fusion like its family members, showing consistency with the previously mentioned idea that the G protein is not necessary for subsequent steps of the hMPV replication cycle.[9][39] Moreover, the fusion function of the F protein has been proven by its ability to bind to host cells via integrin αvβ1 using an Arginine-Glycine-Aspartate (RGD) motif, which is speculated to be the trigger for membrane fusion events.[9] One main difference between hMPV and other Paramyxoviridae viruses’ fusion mechanisms though is that hMPV's fusion events occur at acidic pH levels while other viruses’ fusion events occur at neutral pH levels; however, more research needs to be conducted in this area to get a better understanding of what is different about the hMPV fusion mechanism and why.[39] Although its specific function is uncertain, it is important to note the presence of the SH glycoprotein which seemingly does not have any effects on replication kinetics, cytopathic effects, or plaque formation of hMPV.[39]

After fusion, the viral ribonucleoprotein (RNP) containing negative-sense viral RNA (vRNA) genome is released into the cytoplasm and acts as a template for mRNA and antigenomic cRNA synthesis.[9] From here, most of our knowledge about hMPV transcription is derived from what we already know about RSV and other Paramyxoviridae viruses, including that leader and trailer sequences in the genome are partially complementary and act as promoters for transcription.[9] We see that proteins N, P, and L dissociate from the vRNA and bind to each other to form the polymerase complex so that the genomic RNA can act as a matrix for viral transcription and replication in the cytoplasm.[39] The final step in the replication process of hMPV that is relatively certain is the journeying of the envelope glycoproteins (F, G, and SH) to zones of membranous accumulation via the Golgi apparatus to be exposed at the surface of infected cells.[39] This allows infected cells to merge with adjacent cells through the action of viral fusion proteins on the surface, effectively spreading the virus's genome.[39] The rest of the replication cycle following RNA and viral protein synthesis are unclear and require further research.[9]

Virology

HMPV infects airway epithelial cells in the nose and lung. HMPV is thought to attach to the target cell via the glycoprotein (G) protein interactions with heparan sulfate and other glycosaminoglycans. The HMPV fusion (F) protein encodes an RGD (Arg-Gly-Asp) motif that engages RGD-binding integrins as cellular receptors,[40][41][42][43] then mediates fusion of the cell membrane and viral envelope in a pH-independent fashion, likely within endosomes.[44][45] HMPV then induces the response of chemokines and cytokines such as IL-6, IFN-alpha, TNF-alpha, IL-2, and macrophage inflammatory proteins, which in turn leads to peribronchiolar and perivascular infiltration and inflammation.[46]

Detection

The identification of HMPV has predominantly relied on reverse-transcriptase polymerase chain reaction (RT-PCR) technology to amplify directly from RNA extracted from respiratory specimens. Alternative more cost-effective approaches to the detection of HMPV by nucleic acid-based approaches have been employed and these include:

  1. detection of hMPV antigens in nasopharyngeal secretions by immunofluorescent-antibody test
  2. the use of immunofluorescence staining with monoclonal antibodies to detect HMPV in nasopharyngeal secretions and shell vial cultures
  3. immunofluorescence assays for detection of hMPV-specific antibodies
  4. the use of polyclonal antibodies and direct isolation in cultured cells.

Distribution and hosts

Though hMPV was first discovered and identified in 2001, serological studies showed that hMPV, or a close relative of it, had already been circulating for at least 50 years.[6][47] From this information, it is clear that the virus had not just “jumped” from birds, or some other animal reservoir, to humans shortly before its discovery.[6]

So far, peak infection from hMPV in the northern hemisphere is in late winter and early spring, but it can be found globally across all continents[47] and its distribution is very complex and dynamic.[6] Researchers have found that hMPV is mostly localized and can differ significantly from community to community, allowing for the possibility of the strain in one location one year to be most similar to the strain in a different location the next year.[6] This phenomenon has actually been recorded with the virus strains in Australia in 2001; in France in 2000 and 2002; in Canada in 1999, 2000, 2001, and 2002; in Israel in 2002; and in the Netherlands in 2001 all being very closely related based on their F gene sequences.[6] There are at least two major genotypes of hMPV (A and B) that circulate during community outbreaks and each genotype has two of its own,[6] but as of now, it seems that no one strain is dominant over the others and none of them are known to cause varying levels of severity.[47]

HMPV is most likely spread from infected individuals to others through 1. secretions from coughing and sneezing, 2. close personal contact (ex. touching, shaking hands, etc), and 3. touching objects with viruses on them then touching your mouth, nose, or eyes.[7] Development of a reliable antiviral therapy treatment or vaccine to prevent the spread of hMPV has yet to occur, but there does seem to be promising developments in that area.[6][7] In some vaccine trials, researchers have observed how a live recombinant human parainfluenza virus that contains the hMPV F gene can induce hMPV-specific antibodies and can protect experimental animals from hMPV.[6] Another similar study demonstrated how a chimeric bovine/human parainfluenza virus 3 expressing the hMPV F gene allows for neutralizing antibodies against both parainfluenza and hMPV.[6] However promising these results and trials may seem, it is important to note that these experiments have limitations including their small-population animal models.[6] Overall, while vaccines and antiviral therapy treatments are in the works, the biggest difficulty that researchers face at the moment is the limited data available about the development of hMPV in the natural host.[6]

Transmission

There are no conclusive studies to date; however, it is likely that transmission occurs by contact with contaminated secretions, via droplet, aerosol, or fomite vectors. Hospital-acquired infections with human metapneumovirus have been reported.[48] HMPV has been shown to circulate during fall and winter months with alternating predominance of a single subtype each year.[38]

Treatment

No treatment is yet known,[49] but ribavirin has shown effectiveness in an animal model.[50]

American pharmaceutical corporation Moderna has conducted a clinical trial for a candidate modRNA vaccine against metapneumovirus.[51] As of October 2019, the vaccine candidate has passed through phase I, with reports that the vaccine is well-tolerated at all dose levels at two months, and provokes an immune response which boosts the production of neutralising antibodies.[52]

Evolution

Human metapneumovirus was first reported in 2001 and avian metapneumovirus in the 1970s. There are at least four lineages of human metapneumovirus—A1, A2, B1 and B2. Avian metapneumovirus has been divided into four subgroups—A, B, C and D. Bayesian estimates suggest that human metapneumovirus emerged 119–133 years ago and diverged from avian metapneumovirus around 1800.[53]

2024-2025 outbreak

The Chinese Center for Disease Control and Prevention published data showing that respiratory infections had risen significantly in the week of December 16 to 22, 2024;[54] human metapneumovirus was linked to 6.2 percent of positive respiratory illness tests and 5.4 percent of respiratory-illness hospitalizations in China, more than COVID-19, rhinovirus or adenovirus.[55] Kan Biao, head of the China CDC's National Institute for Communicable Disease Control and Prevention, announced that the rate of HMPV among children ages 14 and under was on the rise in China.[56]

References

  1. ^ a b "ICTV Online (10th) Report".
  2. ^ a b van den Hoogen, Bernadette G.; Jong, Jan C. de; Groen, Jan; Kuiken, Thijs; Groot, Ronald de; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E. (2001). "A newly discovered human pneumovirus isolated from young children with respiratory tract disease". Nature Medicine. 7 (6): 719–724. doi:10.1038/89098. PMC 7095854. PMID 11385510.
  3. ^ a b c d Williams, John V.; Harris, Paul A.; Tollefson, Sharon J.; Halburnt-Rush, Lisa L.; Pingsterhaus, Joyce M.; Edwards, Kathryn M.; Wright, Peter F.; Crowe, James E. Jr. (2004-01-29). "Human Metapneumovirus and Lower Respiratory Tract Disease in Otherwise Healthy Infants and Children". New England Journal of Medicine. 350 (5): 443–450. doi:10.1056/nejmoa025472. ISSN 0028-4793. PMC 1831873. PMID 14749452.
  4. ^ Singh, Vikrant (2025-01-03). "HMPV outbreak in China? Amid viral videos and govt ambiguity, know symptoms and precautions". Wion. Retrieved 2025-01-03.
  5. ^ Amarasinghe, Gaya K.; Bào, Yīmíng; Basler, Christopher F.; Bavari, Sina; Beer, Martin; Bejerman, Nicolás; Blasdell, Kim R.; Bochnowski, Alisa; Briese, Thomas (2017-04-07). "Taxonomy of the order Mononegavirales: update 2017". Archives of Virology. 162 (8): 2493–2504. doi:10.1007/s00705-017-3311-7. PMC 5831667. PMID 28389807.
  6. ^ a b c d e f g h i j k l m n o Kahn, Jeffrey S. (July 2006). "Epidemiology of Human Metapneumovirus". Clinical Microbiology Reviews. 19 (3): 546–557. doi:10.1128/cmr.00014-06. PMC 1539100. PMID 16847085.
  7. ^ a b c d "Human Metapneumovirus". Centers for Disease Control and Prevention. 13 April 2023.
  8. ^ "Human Metapneumovirus (HMPV): Causes & Treatment". Cleveland Clinic.
  9. ^ a b c d e f g h i Schildgen, Verena; Van Den Hoogen, Bernadette; Fouchier, Ron; Tripp, Ralph A.; Alvarez, Rene; Manoha, Catherine; Williams, John; Schildgen, Oliver (Oct 2011). "Human Metapneumovirus: Lessons Learned over the First Decade". Clinical Microbiology Reviews. 24 (4): 734–754. doi:10.1128/cmr.00015-11. PMC 3194831. PMID 21976607.
  10. ^ Jain, Seema; Williams, Derek J.; Arnold, Sandra R.; Ampofo, Krow; Bramley, Anna M.; Reed, Carrie; Stockmann, Chris; Anderson, Evan J.; Grijalva, Carlos G. (2015-02-25). "Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children". New England Journal of Medicine. 372 (9): 835–845. doi:10.1056/nejmoa1405870. PMC 4697461. PMID 25714161.
  11. ^ Williams, John V.; Wang, Chiaoyin K.; Yang, Chin-Fen; Tollefson, Sharon J.; House, Frances S.; Heck, Josh M.; Chu, Marla; Brown, Jennifer B.; Lintao, Linda D. (2006-02-01). "The Role of Human Metapneumovirus in Upper Respiratory Tract Infections in Children: A 20-Year Experience". The Journal of Infectious Diseases. 193 (3): 387–395. doi:10.1086/499274. ISSN 0022-1899. PMC 1586246. PMID 16388486.
  12. ^ Leung, Jessica; Esper, Frank; Weibel, Carla; Kahn, Jeffrey S. (2005-03-01). "Seroepidemiology of Human Metapneumovirus (hMPV) on the Basis of a Novel Enzyme-Linked Immunosorbent Assay Utilizing hMPV Fusion Protein Expressed in Recombinant Vesicular Stomatitis Virus". Journal of Clinical Microbiology. 43 (3): 1213–1219. doi:10.1128/jcm.43.3.1213-1219.2005. ISSN 0095-1137. PMC 1081231. PMID 15750086.
  13. ^ a b Pavlin, Julie A.; Hickey, Andrew C.; Ulbrandt, Nancy; Chan, Yee-Peng; Endy, Timothy P.; Boukhvalova, Marina S.; Chunsuttiwat, Supamit; Nisalak, Ananda; Libraty, Daniel H. (2008-09-15). "Human Metapneumovirus Reinfection among Children in Thailand Determined by ELISA Using Purified Soluble Fusion Protein". The Journal of Infectious Diseases. 198 (6): 836–842. doi:10.1086/591186. ISSN 0022-1899. PMC 2648801. PMID 18680407.
  14. ^ Dunn, Sarah R.; Ryder, Alex B.; Tollefson, Sharon J.; Xu, Meng; Saville, Benjamin R.; Williams, John V. (2013-10-01). "Seroepidemiologies of Human Metapneumovirus and Respiratory Syncytial Virus in Young Children, Determined with a New Recombinant Fusion Protein Enzyme-Linked Immunosorbent Assay". Clinical and Vaccine Immunology. 20 (10): 1654–1656. doi:10.1128/cvi.00750-12. ISSN 1556-6811. PMC 3807191. PMID 23945161.
  15. ^ Howard, Leigh M.; Edwards, Kathryn M.; Zhu, Yuwei; Griffin, Marie R.; Weinberg, Geoffrey A.; Szilagyi, Peter G.; Staat, Mary A.; Payne, Daniel C.; Williams, John V. (2017). "Clinical Features of Human Metapneumovirus Infection in Ambulatory Children Aged 5–13 Years". Journal of the Pediatric Infectious Diseases Society. 7 (2): 165–168. doi:10.1093/jpids/pix012. PMC 5954304. PMID 28369564.
  16. ^ a b c Falsey, Ann R.; Erdman, Dean; Anderson, Larry J.; Walsh, Edward E. (2003-03-01). "Human Metapneumovirus Infections in Young and Elderly Adults". The Journal of Infectious Diseases. 187 (5): 785–790. doi:10.1086/367901. ISSN 0022-1899. PMID 12599052.
  17. ^ Williams, John V.; Maitre, Nathalie (2016-07-28). "Human metapneumovirus in the preterm neonate: current perspectives". Research and Reports in Neonatology. 6: 41–49. doi:10.2147/rrn.s76270. PMC 5120728. PMID 27891060.
  18. ^ Shahda, S.; Carlos, W.g.; Kiel, P.j.; Khan, B.a.; Hage, C.a. (2011-06-01). "The human metapneumovirus: a case series and review of the literature". Transplant Infectious Disease. 13 (3): 324–328. doi:10.1111/j.1399-3062.2010.00575.x. ISSN 1399-3062. PMC 3107511. PMID 21631655.
  19. ^ Chu, Helen Y.; Renaud, Christian; Ficken, Elle; Thomson, Blythe; Kuypers, Jane; Englund, Janet A. (2014-12-01). "Respiratory Tract Infections Due to Human Metapneumovirus in Immunocompromised Children". Journal of the Pediatric Infectious Diseases Society. 3 (4): 286–293. doi:10.1093/jpids/piu100. ISSN 2048-7193. PMC 4240341. PMID 25419459.
  20. ^ Seo, Sachiko; Gooley, Ted A.; Kuypers, Jane M.; Stednick, Zachary; Jerome, Keith R.; Englund, Janet A.; Boeckh, Michael (2016-07-15). "Human Metapneumovirus Infections Following Hematopoietic Cell Transplantation: Factors Associated With Disease Progression". Clinical Infectious Diseases. 63 (2): 178–185. doi:10.1093/cid/ciw284. ISSN 1058-4838. PMC 4928387. PMID 27143659.
  21. ^ Shah, Dimpy P.; Shah, Pankil K.; Azzi, Jacques M.; Chaer, Firas El; Chemaly, Roy F. (2016). "Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review". Cancer Letters. 379 (1): 100–106. doi:10.1016/j.canlet.2016.05.035. PMC 4935561. PMID 27260872.
  22. ^ a b Walsh, Edward E.; Peterson, Derick R.; Falsey, Ann R. (2008-12-08). "Human Metapneumovirus Infections in Adults: Another Piece of the Puzzle". Archives of Internal Medicine. 168 (22): 2489–2496. doi:10.1001/archinte.168.22.2489. ISSN 0003-9926. PMC 2783624. PMID 19064834.
  23. ^ a b Widmer, Kyle; Zhu, Yuwei; Williams, John V.; Griffin, Marie R.; Edwards, Kathryn M.; Talbot, H. Keipp (2012-07-01). "Rates of Hospitalizations for Respiratory Syncytial Virus, Human Metapneumovirus, and Influenza Virus in Older Adults". The Journal of Infectious Diseases. 206 (1): 56–62. doi:10.1093/infdis/jis309. ISSN 0022-1899. PMC 3415933. PMID 22529314.
  24. ^ Widmer, Kyle; Griffin, Marie R.; Zhu, Yuwei; Williams, John V.; Talbot, H. Keipp (2014-05-01). "Respiratory syncytial virus- and human metapneumovirus-associated emergency department and hospital burden in adults". Influenza and Other Respiratory Viruses. 8 (3): 347–352. doi:10.1111/irv.12234. ISSN 1750-2659. PMC 3984605. PMID 24512531.
  25. ^ Williams, John V.; Crowe, James E.; Enriquez, Rachel; Minton, Patricia; Peebles, R. Stokes; Hamilton, Robert G.; Higgins, Stanley; Griffin, Marie; Hartert, Tina V. (2005-10-01). "Human Metapneumovirus Infection Plays an Etiologic Role in Acute Asthma Exacerbations Requiring Hospitalization in Adults". The Journal of Infectious Diseases. 192 (7): 1149–1153. doi:10.1086/444392. ISSN 0022-1899. PMC 1476781. PMID 16136455.
  26. ^ Williams, John V.; Tollefson, Sharon J.; Heymann, Peter W.; Carper, Holliday T.; Patrie, James; Crowe Jr., James E. (2005). "Human metapneumovirus infection in children hospitalized for wheezing". Journal of Allergy and Clinical Immunology. 115 (6): 1311–1312. doi:10.1016/j.jaci.2005.02.001. PMC 1476700. PMID 15940152.
  27. ^ García-García, M.l.; Calvo, C.; Casas, I.; Bracamonte, T.; Rellán, A.; Gozalo, F.; Tenorio, T.; Pérez-Breña, P. (2007-05-01). "Human metapneumovirus bronchiolitis in infancy is an important risk factor for asthma at age 5". Pediatric Pulmonology. 42 (5): 458–464. doi:10.1002/ppul.20597. ISSN 1099-0496. PMID 17427899. S2CID 2395811.
  28. ^ Khetsuriani, Nino; Kazerouni, N. Neely; Erdman, Dean D.; Lu, Xiaoyan; Redd, Stephen C.; Anderson, Larry J.; Teague, W. Gerald (2007). "Prevalence of viral respiratory tract infections in children with asthma". Journal of Allergy and Clinical Immunology. 119 (2): 314–321. doi:10.1016/j.jaci.2006.08.041. PMC 7112359. PMID 17140648.
  29. ^ Vicente, Diego; Montes, Milagrosa; Cilla, Gustavo; Pérez-Trallero, Emilio (July 2004). "Human Metapneumovirus and Chronic Obstructive Pulmonary Disease". Emerging Infectious Diseases. 10 (7): 1338–1339. doi:10.3201/eid1007.030633. ISSN 1080-6040. PMC 3323314. PMID 15338546.
  30. ^ Martinello, Richard A.; Esper, Frank; Weibel, Carla; Ferguson, David; Landry, Marie L.; Kahn, Jeffrey S. (2006). "Human metapneumovirus and exacerbations of chronic obstructive pulmonary disease". Journal of Infection. 53 (4): 248–254. doi:10.1016/j.jinf.2005.11.010. PMC 7112509. PMID 16412516.
  31. ^ Kan-o, Keiko; Ramirez, Ruben; MacDonald, Martin I.; Rolph, Michael; Rudd, Penny A.; Spann, Kirsten M.; Mahalingam, Suresh; Bardin, Philip G.; Thomas, Belinda J. (2017-05-15). "Human Metapneumovirus Infection in Chronic Obstructive Pulmonary Disease: Impact of Glucocorticosteroids and Interferon". The Journal of Infectious Diseases. 215 (10): 1536–1545. doi:10.1093/infdis/jix167. ISSN 0022-1899. PMID 28379462.
  32. ^ Boivin, Guy; Serres, Gaston De; Hamelin, Marie-Eve; Côté, Stéphanie; Argouin, Marco; Tremblay, Geneviève; Maranda-Aubut, Renée; Sauvageau, Chantal; Ouakki, Manale (2007-05-01). "An Outbreak of Severe Respiratory Tract Infection Due to Human Metapneumovirus in a Long-Term Care Facility". Clinical Infectious Diseases. 44 (9): 1152–1158. doi:10.1086/513204. ISSN 1058-4838. PMID 17407031.
  33. ^ Louie, Janice K.; Schnurr, David P.; Pan, Chao-Yang; Kiang, David; Carter, Connie; Tougaw, Sandra; Ventura, Jean; Norman, Agnes; Belmusto, Vivian (2007-09-01). "A Summer Outbreak of Human Metapneumovirus Infection in a Long-Term-Care Facility". The Journal of Infectious Diseases. 196 (5): 705–708. doi:10.1086/519846. ISSN 0022-1899. PMID 17674312.
  34. ^ Neu, Natalie; Plaskett, Theresa; Hutcheon, Gordon; Murray, Meghan; Southwick, Karen L.; Saiman, Lisa (June 2012). "Epidemiology of Human Metapneumovirus in a Pediatric Long-Term Care Facility". Infection Control & Hospital Epidemiology. 33 (6): 545–550. doi:10.1086/665727. ISSN 0899-823X. PMID 22561708. S2CID 2132679.
  35. ^ "Outbreaks of Human Metapneumovirus in Two Skilled Nursing Facilities — West Virginia and Idaho, 2011–2012". www.cdc.gov. Retrieved 2017-09-16.
  36. ^ Yang, Zifeng; Suzuki, Akira; Watanabe, Oshi; Okamoto, Michiko; Ohmi, Akira; Huang, Wenbo; Nishimura, Hidekazu (2014). "Outbreak of human metapneumovirus infection in a severe motor-and-intellectual disabilities ward in Japan". Japanese Journal of Infectious Diseases. 67 (4): 318–321. doi:10.7883/yoken.67.318. ISSN 1884-2836. PMID 25056083.
  37. ^ van den Hoogen, Bernadette G.; Bestebroer, Theo M.; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M. (2002-03-30). "Analysis of the genomic sequence of a human metapneumovirus". Virology. 295 (1): 119–132. doi:10.1006/viro.2001.1355. hdl:1765/3864. ISSN 0042-6822. PMID 12033771.
  38. ^ a b Perchetti, GA; Wilcox, N; Chu, HY; Katz, J; Khatry, SK; LeClerq, SC; Tielsch, JM; Jerome, KR; Englund, JA; Kuypers, J (November 2020). "Human Metapneumovirus Infection and Genotyping of Infants in Rural Nepal". Journal of the Pediatric Infectious Diseases Society. 10 (4): 408–416. doi:10.1093/jpids/piaa118. PMID 33137178.
  39. ^ a b c d e f g h i Feuillet, F.; Lina, B.; Rosa-Calatrava, M.; Boivin, G. (Feb 2012). "Ten years of human metapneumovirus research". Journal of Clinical Virology. 53 (2): 97–105. doi:10.1016/j.jcv.2011.10.002. PMID 22074934.
  40. ^ Cseke, G.; Maginnis, M. S.; Cox, R. G.; Tollefson, S. J.; Podsiad, A. B.; Wright, D. W.; Dermody, T. S.; Williams, J. V. (2009). "Integrin  v 1 promotes infection by human metapneumovirus". Proceedings of the National Academy of Sciences. 106 (5): 1566–1571. doi:10.1073/pnas.0801433106. PMC 2629439. PMID 19164533.
  41. ^ Chang, A.; Masante, C.; Buchholz, U. J.; Dutch, R. E. (2012). "Human Metapneumovirus (HMPV) Binding and Infection Are Mediated by Interactions between the HMPV Fusion Protein and Heparan Sulfate". Journal of Virology. 86 (6): 3230–3243. doi:10.1128/JVI.06706-11. PMC 3302303. PMID 22238303.
  42. ^ Cox, R. G.; Livesay, S. B.; Johnson, M.; Ohi, M. D.; Williams, J. V. (2012). "The Human Metapneumovirus Fusion Protein Mediates Entry via an Interaction with RGD-Binding Integrins". Journal of Virology. 86 (22): 12148–12160. doi:10.1128/JVI.01133-12. PMC 3486500. PMID 22933271.
  43. ^ Wei, Y.; Zhang, Y.; Cai, H.; Mirza, A. M.; Iorio, R. M.; Peeples, M. E.; Niewiesk, S.; Li, J. (2014). "Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis". Journal of Virology. 88 (8): 4338–4352. doi:10.1128/JVI.03491-13. PMC 3993731. PMID 24478423.
  44. ^ Schowalter, R. M.; Smith, S. E.; Dutch, R. E. (2006). "Characterization of Human Metapneumovirus F Protein-Promoted Membrane Fusion: Critical Roles for Proteolytic Processing and Low pH". Journal of Virology. 80 (22): 10931–10941. doi:10.1128/JVI.01287-06. PMC 1642150. PMID 16971452.
  45. ^ Cox, Reagan G.; Mainou, Bernardo A.; Johnson, Monika; Hastings, Andrew K.; Schuster, Jennifer E.; Dermody, Terence S.; Williams, John V. (2015). "Human Metapneumovirus is Capable of Entering Cells by Fusion with Endosomal Membranes". PLOS Pathogens. 11 (12): e1005303. doi:10.1371/journal.ppat.1005303. PMC 4667933. PMID 26629703.
  46. ^ Uddin, Sanaa; Thomas, Meagan (2023), "Human Metapneumovirus", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 32809745, retrieved 2023-11-18
  47. ^ a b c Uddin, Sanaa; Thomas, Meagan (July 18, 2022). "Human Metapneumovirus". StatPearls [Internet]. PMID 32809745.
  48. ^ Peiris, JS; Tang, WH; Chan, KH; Khong, PL; Guan, Y; Lau, YL; Chiu, SS (June 2003). "Children with respiratory disease associated with metapneumovirus in Hong Kong". Emerging Infectious Diseases. 9 (6): 628–633. doi:10.3201/eid0906.030009. PMC 3000155. PMID 12781000.
  49. ^ Bao X, Liu T, Shan Y, Li K, Garofalo RP, Casola A (May 2008). Baric RS (ed.). "Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses". PLOS Pathog. 4 (5): e1000077. doi:10.1371/journal.ppat.1000077. PMC 2386556. PMID 18516301.
  50. ^ Deffrasnes C, Hamelin ME, Boivin G (April 2007). "Human metapneumovirus". Semin Respir Crit Care Med. 28 (2): 213–21. doi:10.1055/s-2007-976493. PMID 17458775. S2CID 21308968.
  51. ^ https://trials.modernatx.com/trials/NCT03392389 [dead link]
  52. ^ "Moderna to Present Data from Two of Its Prophylactic mRNA Vaccines at IDWeek 2019" (Press release). 2 October 2019.
  53. ^ de Graaf M, Osterhaus AD, Fouchier RA, Holmes EC (2008). "Evolutionary dynamics of human and avian metapneumoviruses". J. Gen. Virol. 89 (Pt 12): 2933–42. doi:10.1099/vir.0.2008/006957-0. PMID 19008378.
  54. ^ "China steps up monitoring of emerging respiratory diseases: Report". Hindustan Times. January 03, 2025. {{cite news}}: Check date values in: |date= (help)
  55. ^ Willmoth, Hatty (January 3, 2025). "HMPV: China's New Virus Outbreak Explained". Newsweek.
  56. ^ Dewan, Pandora (3 January 2025). "Viral disease HMPV is on the rise among kids in China — what is it?". Live Science.

Read other articles:

American college football season 2004 South Carolina Gamecocks footballConferenceSoutheastern ConferenceDivisionEastern DivisionRecord6–5 (4–4 SEC)Head coachLou Holtz (6th season)Offensive coordinatorSkip Holtz (6th season)Defensive coordinatorRick Minter (1st season)Home stadiumWilliams-Brice Stadium (c. 80,250, grass)Seasons← 20032005 → 2004 Southeastern Conference football standings vte Conf Overall Team   W   L     W  ...

 

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2014-07)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Vanilla dillonianaSystematikDomänEukaryoterEukaryotaRikeVäxterPlantaeDivisionKärlväxterTracheophytaKlassEnhjärtbladiga blomväxterLiliopsidaOrdningSparrisordningenAsparagalesFamiljOrkidéerOrchidaceaeSläkteVa...

 

Australian rules football club This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for sports and athletics. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cann...

  Chotacabras sencillo Estado de conservaciónPreocupación menor (UICN 3.1)[1]​TaxonomíaReino: AnimaliaFilo: ChordataClase: AvesOrden: CaprimulgiformesFamilia: CaprimulgidaeGénero: CaprimulgusEspecie: C. inornatusHeuglin, 1869[editar datos en Wikidata] El chotacabras sencillo o chotacabra sencilla (Caprimulgus inornatus)[2]​ es una especie de ave caprimulgiforme de la familia Caprimulgidae que vive en el África subsahariana. Distribución Cría en el Sahel ...

 

1988 single by MartikaMore Than You KnowSingle by Martikafrom the album Martika B-sideAlibisReleasedNovember 1988 (US)January 1, 1990 (UK re-release)Genre Dance-pop[1] freestyle[1] Length4:11LabelSonySongwriter(s)Martika, Michael Jay, Marvin MorrowProducer(s)Michael JayMartika singles chronology More Than You Know (1988) Toy Soldiers (1989) More Than You Know is the first single released from Martika's eponymous debut album. More Than You Know debuted on the Billboard Hot 100 ...

 

HyphemaHyphema - occupying half of anterior chamber of eyeInformasi umumNama lainHyphema, HyphaemaSpesialisasiOftalmologi  Hifema (bahasa Inggris: Hyphema) adalah suatu kondisi yang terjadi ketika darah memasuki ruang depan (anterior) mata antara iris dan kornea. Orang biasanya pertama kali menyadari kehilangan penglihatan atau penurunan penglihatan. Mata mungkin juga tampak memiliki semburat kemerahan, atau tampak seperti kumpulan kecil darah di bagian bawah iris atau di kornea. Hif...

Town in Powys, Wales Town in WalesLlandrindod WellsWelsh: LlandrindodTownLlandrindod Wells TownLlandrindod WellsLocation within PowysPopulation5,309 (2011)[1]OS grid referenceSO055615CommunityLlandrindod WellsPrincipal areaPowysLlandrindod Wells Town CouncilPreserved countyPowysCountryWalesSovereign stateUnited KingdomPost townLLANDRINDOD WELLSPostcode districtLD1Dialling code01597PoliceDyfed-PowysFireMid and West WalesAmbulanceWelsh UK Par...

 

Wappen des Bistums Konstanz Das Bistum Konstanz (lat. Dioecesis Constantinensis) ist eine ehemalige Diözese der Römisch-katholischen Kirche mit Sitz in Konstanz am Bodensee unter dem Patrozinium der Heiligen Pelagius und Konrad von Konstanz. Es bestand von etwa 585 bis zu seiner Auflösung 1821. Die zu Deutschland gehörenden Gebiete gingen in den neu gegründeten Bistümern Freiburg und Rottenburg auf, die zur Schweiz gehörenden Gebiete wurden den Bistümern Chur und Basel zur Verwaltung ...

 

Bendera Frisia (rasio 9:13; de facto 2:3) Bendera Frisia (Belanda: Friese vlag atau vlag van Friesland), adalah bendera resmi provinsi Friesland di Belanda. Terdiri dari empat garis biru dan tiga garis putih miring; di garis putih terdapat tujuh pompeblêden merah, berbentuk daun hati lili air kuning. Baju klub sepak bola sc Heerenveen dan Blauhúster Dakkapel didesain mengikuti bendera ini. Simbol Tujuh pompeblêden merah berarti negara laut Frisia pada Abad Pertengahan: daerah independe...

American politician (1942–2018) Togo West3rd United States Secretary of Veterans AffairsIn officeMay 4, 1998 – July 25, 2000PresidentBill ClintonPreceded byJesse BrownSucceeded byAnthony Principi16th United States Secretary of the ArmyIn officeNovember 22, 1993 – May 4, 1998PresidentBill ClintonPreceded byGordon Sullivan (Acting)Succeeded byRobert M. Walker (Acting)General Counsel of the Department of DefenseIn officeFebruary 1, 1980 – January 20, 1981Presid...

 

San Juan de Pasto Pasto (Nariño) Pasto San Juan de Pasto auf der Karte von Nariño Lage der Gemeinde Pasto auf der Karte von Nariño Koordinaten 1° 12′ 36″ N, 77° 16′ 29″ W1.21-77.2747222222222527Koordinaten: 1° 12′ 36″ N, 77° 16′ 29″ W Basisdaten Staat Kolumbien Departamento Nariño Stadtgründung 1539 Einwohner 460.454 (2019) Stadtinsignien Detaildaten Fläche 1181 km2 Bevölkerungsdichte 390 Ew....

 

Dominican baseball player Not to be confused with Luis Ortiz (pitcher, born 1995) or Luis Ortiz (third baseman). Baseball player Luis OrtizOrtiz with the Indianapolis Indians in 2022Pittsburgh Pirates – No. 48PitcherBorn: (1999-01-27) January 27, 1999 (age 24)San Pedro de Macorís, Dominican RepublicBats: RightThrows: RightMLB debutSeptember 13, 2022, for the Pittsburgh PiratesMLB statistics (through 2023 season)Win–loss record5–7Earned run average4.73Strikeouts76 Te...

Australian recipient of the Victoria Cross (1893–1965) This article is about the Australian recipient of the Victoria Cross. For the British newspaper proprietor and politician, see Henry Dalziel, 1st Baron Dalziel of Kirkcaldy. Henry DalzielPrivate Henry Dalziel, c. 1919Born(1893-02-18)18 February 1893Irvinebank, QueenslandDied24 July 1965(1965-07-24) (aged 72)Greenslopes Repatriation Hospital, Brisbane, QueenslandBuriedMt Thompson CrematoriumAllegianceAustraliaService/branchAus...

 

Class of British battlecruisers Not to be confused with Lion-class battleship. Princess Royal at anchor, before 1916 Class overview Builders HM Dockyard, Devonport Vickers, Barrow-in-Furness Operators Royal Navy Preceded byIndefatigable class Succeeded byQueen Mary Built1909–1912 In commission1912–1920 Completed2 Scrapped2 General characteristics (as built) TypeBattlecruiser Displacement26,270 long tons (26,690 t) (normal) Length700 ft (213.4 m) Beam88 ft 6.7...

 

Mapa Los bosques caducifolios secos del valle de Narmada son una ecorregión de bosque seco tropical de la India central. La ecorregión se encuentra principalmente en el estado de Madhya Pradesh, pero se extiende por territorios de los estados de Chhattisgarh, Maharashtra y Uttar Pradesh. Encuadre Los bosques caducifolios secos del Valle de Narmada cubren un área de 169.900 km² del valle inferior del río Narmada y las tierras altas circundantes de la cordillera de Vindhya al norte y el ex...

1925 film by Paul Sloane The Shock PunchLobby cardDirected byPaul SloaneWritten byLuther Reed (scenario)Based onThe Shock Punchby John Monk SaundersProduced byAdolph ZukorJesse LaskyStarringRichard DixCinematographyWilliam MillerDistributed byParamount PicturesRelease date February 25, 1925 (1925-02-25) Running time60 minutesCountryUnited StatesLanguageSilent (English intertitles) The Shock Punch is a 1925 American silent boxing drama film produced by Famous Players–Lasky and...

 

Administrative territorial entity of Côte d'Ivoire Politics of Ivory Coast Constitution Human rights Government President Alassane Ouattara Vice President Tiémoko Meyliet Koné Prime Minister Robert Beugré Mambé Government Robert Beugré Mambé government Parliament National Assembly Speaker: Guillaume Soro Senate Speaker: Jeannot Ahoussou-Kouadio (TBC) Administrative divisions Districts Regions Departments Sub-prefectures Communes Villages Elections Recent elections Presidential: 2015202...

 

У этого термина существуют и другие значения, см. Арлингтон. ГородАрлингтонангл. Arlington Флаг 32°42′18″ с. ш. 97°07′22″ з. д.HGЯO Страна  США Штат Техас Округ Тэррент Мэр Джефф Уильямс История и география Основан 1876 Первое упоминание 1876 Площадь 256,5 км² Высота центра...

Part of the Croatian War of Independence Battle of the BarracksPart of the Croatian War of IndependenceA destroyed Yugoslav People's Army T-55 tankDate14 September 1991 – 23 November 1991(2 months, 1 week and 2 days)LocationCroatiaResult Croatian victoryBelligerents  Croatia YugoslaviaCommanders and leaders Anton Tus Veljko KadijevićUnits involved Croatian National Guard (until November 1991) Croatian Army (from November 1991) Croatian Police Yugoslav Ground Forces Yugo...

 

Chinese launch site 40°57′29″N 100°17′28″E / 40.95806°N 100.29111°E / 40.95806; 100.29111 Jiuquan Satellite Launch CenterMap of the chinese Jiuquan Satellite Launch CenterLocationEjin, Alxa, Inner MongoliaCoordinates40°57′29″N 100°17′28″E / 40.95806°N 100.29111°E / 40.95806; 100.29111OperatorCASCTotal launches130Launch pad(s)TwoLaunch historyStatusActiveSite 9401 (SLS-2) launch historyStatusActiveLaunches109First lau...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!