Homotopy Lie algebra

In mathematics, in particular abstract algebra and topology, a homotopy Lie algebra (or -algebra) is a generalisation of the concept of a differential graded Lie algebra. To be a little more specific, the Jacobi identity only holds up to homotopy. Therefore, a differential graded Lie algebra can be seen as a homotopy Lie algebra where the Jacobi identity holds on the nose. These homotopy algebras are useful in classifying deformation problems over characteristic 0 in deformation theory because deformation functors are classified by quasi-isomorphism classes of -algebras.[1] This was later extended to all characteristics by Jonathan Pridham.[2]

Homotopy Lie algebras have applications within mathematics and mathematical physics; they are linked, for instance, to the Batalin–Vilkovisky formalism much like differential graded Lie algebras are.

Definition

There exists several different definitions of a homotopy Lie algebra, some particularly suited to certain situations more than others. The most traditional definition is via symmetric multi-linear maps, but there also exists a more succinct geometric definition using the language of formal geometry. Here the blanket assumption that the underlying field is of characteristic zero is made.

Geometric definition

A homotopy Lie algebra on a graded vector space is a continuous derivation, , of order that squares to zero on the formal manifold . Here is the completed symmetric algebra, is the suspension of a graded vector space, and denotes the linear dual. Typically one describes as the homotopy Lie algebra and with the differential as its representing commutative differential graded algebra.

Using this definition of a homotopy Lie algebra, one defines a morphism of homotopy Lie algebras, , as a morphism of their representing commutative differential graded algebras that commutes with the vector field, i.e., . Homotopy Lie algebras and their morphisms define a category.

Definition via multi-linear maps

The more traditional definition of a homotopy Lie algebra is through an infinite collection of symmetric multi-linear maps that is sometimes referred to as the definition via higher brackets. It should be stated that the two definitions are equivalent.

A homotopy Lie algebra[3] on a graded vector space is a collection of symmetric multi-linear maps of degree , sometimes called the -ary bracket, for each . Moreover, the maps satisfy the generalised Jacobi identity:

for each n. Here the inner sum runs over -unshuffles and is the signature of the permutation. The above formula have meaningful interpretations for low values of ; for instance, when it is saying that squares to zero (i.e., it is a differential on ), when it is saying that is a derivation of , and when it is saying that satisfies the Jacobi identity up to an exact term of (i.e., it holds up to homotopy). Notice that when the higher brackets for vanish, the definition of a differential graded Lie algebra on is recovered.

Using the approach via multi-linear maps, a morphism of homotopy Lie algebras can be defined by a collection of symmetric multi-linear maps which satisfy certain conditions.

Definition via operads

There also exists a more abstract definition of a homotopy algebra using the theory of operads: that is, a homotopy Lie algebra is an algebra over an operad in the category of chain complexes over the operad.

(Quasi) isomorphisms and minimal models

A morphism of homotopy Lie algebras is said to be a (quasi) isomorphism if its linear component is a (quasi) isomorphism, where the differentials of and are just the linear components of and .

An important special class of homotopy Lie algebras are the so-called minimal homotopy Lie algebras, which are characterized by the vanishing of their linear component . This means that any quasi isomorphism of minimal homotopy Lie algebras must be an isomorphism. Any homotopy Lie algebra is quasi-isomorphic to a minimal one, which must be unique up to isomorphism and it is therefore called its minimal model.

Examples

Because -algebras have such a complex structure describing even simple cases can be a non-trivial task in most cases. Fortunately, there are the simple cases coming from differential graded Lie algebras and cases coming from finite dimensional examples.

Differential graded Lie algebras

One of the approachable classes of examples of -algebras come from the embedding of differential graded Lie algebras into the category of -algebras. This can be described by giving the derivation, the Lie algebra structure, and for the rest of the maps.

Two term L algebras

In degrees 0 and 1

One notable class of examples are -algebras which only have two nonzero underlying vector spaces . Then, cranking out the definition for -algebras this means there is a linear map

,

bilinear maps

, where ,

and a trilinear map

which satisfy a host of identities.[4] pg 28 In particular, the map on implies it has a lie algebra structure up to a homotopy. This is given by the differential of since the gives the -algebra structure implies

,

showing it is a higher Lie bracket. In fact, some authors write the maps as , so the previous equation could be read as

,

showing that the differential of the 3-bracket gives the failure for the 2-bracket to be a Lie algebra structure. It is only a Lie algebra up to homotopy. If we took the complex then has a structure of a Lie algebra from the induced map of .

In degrees 0 and n

In this case, for , there is no differential, so is a Lie algebra on the nose, but, there is the extra data of a vector space in degree and a higher bracket

It turns out this higher bracket is in fact a higher cocyle in Lie algebra cohomology. More specifically, if we rewrite as the Lie algebra and and a Lie algebra representation (given by structure map ), then there is a bijection of quadruples

where is an -cocycle

and the two-term -algebras with non-zero vector spaces in degrees and .[4]pg 42 Note this situation is highly analogous to the relation between group cohomology and the structure of n-groups with two non-trivial homotopy groups. For the case of term term -algebras in degrees and there is a similar relation between Lie algebra cocycles and such higher brackets. Upon first inspection, it's not an obvious results, but it becomes clear after looking at the homology complex

,

so the differential becomes trivial. This gives an equivalent -algebra which can then be analyzed as before.

Example in degrees 0 and 1

One simple example of a Lie-2 algebra is given by the -algebra with where is the cross-product of vectors and is the trivial representation. Then, there is a higher bracket given by the dot product of vectors

It can be checked the differential of this -algebra is always zero using basic linear algebra[4]pg 45.

Finite dimensional example

Coming up with simple examples for the sake of studying the nature of -algebras is a complex problem. For example,[5] given a graded vector space where has basis given by the vector and has the basis given by the vectors , there is an -algebra structure given by the following rules

where . Note that the first few constants are

Since should be of degree , the axioms imply that . There are other similar examples for super[6] Lie algebras.[7] Furthermore, structures on graded vector spaces whose underlying vector space is two dimensional have been completely classified.[3]

See also

References

  1. ^ Lurie, Jacob. "Derived Algebraic Geometry X: Formal Moduli Problems" (PDF). p. 31, Theorem 2.0.2.
  2. ^ Pridham, Jonathan Paul (2012). "Derived deformations of schemes". Communications in Analysis and Geometry. 20 (3): 529–563. arXiv:0908.1963. doi:10.4310/CAG.2012.v20.n3.a4. MR 2974205.
  3. ^ a b Daily, Marilyn Elizabeth (2004-04-14). Structures on Spaces of Low Dimension (PhD). hdl:1840.16/5282.
  4. ^ a b c Baez, John C.; Crans, Alissa S. (2010-01-24). "Higher-Dimensional Algebra VI: Lie 2-Algebras". Theory and Applications of Categories. 12: 492–528. arXiv:math/0307263.
  5. ^ Daily, Marilyn; Lada, Tom (2005). "A finite dimensional algebra example in gauge theory". Homology, Homotopy and Applications. 7 (2): 87–93. doi:10.4310/HHA.2005.v7.n2.a4. MR 2156308.
  6. ^ Fialowski, Alice; Penkava, Michael (2002). "Examples of infinity and Lie algebras and their versal deformations". Banach Center Publications. 55: 27–42. arXiv:math/0102140. doi:10.4064/bc55-0-2. MR 1911978. S2CID 14082754.
  7. ^ Fialowski, Alice; Penkava, Michael (2005). "Strongly homotopy Lie algebras of one even and two odd dimensions". Journal of Algebra. 283 (1): 125–148. arXiv:math/0308016. doi:10.1016/j.jalgebra.2004.08.023. MR 2102075. S2CID 119142148.

Introduction

In physics

In deformation and string theory

Read other articles:

شعار الإمارات العربية المتحدة {{{alt}}}الشعار الحالي التفاصيل المستعمل الإمارات العربية المتحدة البلد الإمارات العربية المتحدة  الاعتماد 1973- تم تعديله 2008 الدرع علم الإمارات، وطوق به سبع نجوم الدعامات صقر ذهبي كلمات مكتوبة الإمارات العربية المتحدة مجالات الاستخدام الإمارا

 

The American Naturalist País Estados Unidos Idioma inglés Categoría Ecología, evolución y biologíaAbreviatura Amer. NaturalistFundación 1867 DesarrolloEditor Mark A. McPeekPublicador University of Chicago Press en nombre de American Society of NaturalistsCirculaciónFrecuencia MensualCirculación 4.736 año 2010ISSN 0003-0147LCCN 00-227441OCLC 45446849Página web oficial[editar datos en Wikidata] The American Naturalist, (abreviado Amer. Naturalist), es una revista científic...

 

Logo BTV sejak 11 Oktober 2022 Halaman ini memuat daftar acara BTV. Acara saat ini News (Berita) BeritaSatu BeritaSatu Pagi (bersama IDTV) BeritaSatu Siang (bersama IDTV) BeritaSatu Sore BeritaSatu Malam BeritaSatu Utama (bersama IDTV) BeritaSatu Terkini BeritaSatu Breaking News BeritaSatu Spesial Obrolan Obrolan Pagi (bersama IDTV) Obrolan Malam Fristian Lunch Talk 30 Minutes with... 60 Minutes with... Investor Daily Round Table (acara bulanan) DW Indonesia Euromaxx (bersama MetroTV, Magna C...

Julius Mössel (* 13. Oktober 1871 in Fürth; † 13. August 1957 in Chicago) war ein deutscher Dekorations- und Kunstmaler, der ab 1926 in den USA lebte und dort auch als Staffeleibildmaler arbeitete. Buchtitel der Monografie über Julius Mössel von 1995 mit Foto des Kuppelgemäldes, eines Sternbilderhimmels, im Opernhaus Stuttgart Teehaus (oben) und Marmorsaal (unten), Tafelbild des Julius Mössel von 1912/13 Inhaltsverzeichnis 1 Karriere in Deutschland 2 Karriere in den USA 3 Werke 4 Lite...

 

100 метрів брасом (чоловіки)на XXXI Олімпійських іграх Місце проведенняОлімпійський водний стадіон (Ріо-де-Жанейро)Дати6 серпня 2016 (попередні запливиі півфінали)7 серпня 2016 (фінал)Призери  Адам Піті  Велика Британія Камерон ван дер Бург  ПАР Коді Міллер &#...

 

منتمر قرية منتمر في الشتاء عام 1963 الإحداثيات 51°52′12″N 0°41′02″W / 51.87°N 0.684°W / 51.87; -0.684  [1] تقسيم إداري  البلد المملكة المتحدة[2]  التقسيم الأعلى باكينغهامشير  [لغات أخرى]‏  معلومات أخرى LU7  رمز الهاتف 01296  رمز جيونيمز 2642740،  و7296369  ت...

Zwölf Stämme Israels Ruben Simeon Levi Juda Dan Naftali Gad Ascher Issachar Sebulon Josef Manasse Ephraim Benjamin Der Stamm Manasse (hebräisch מְנַשֶּׁה), genannt nach dem Stammvater Manasse, ist einer der Stämme Israels, die nach dem Tanach bzw. dem Alten Testament von den Söhnen Jakobs abstammen. Manasse war der Sohn Josephs, seine Mutter war die Ägypterin Asenath, die Tochter des Sonnenpriesters Potiferas von On. Sein Bruder war Ephraim. In der Bibel Die 12 Stämme Israels ...

 

Health professional who treats animals A veterinarian conducts a surgery on a domestic cat. Bovine hoof health management by a veterinarian A veterinarian (vet) is a medical professional who practices veterinary medicine. They manage a wide range of health conditions and injuries in non-human animals. Along with this, veterinarians also play a role in animal reproduction, health management, conservation, husbandry and breeding and preventive medicine like nutrition, vaccination and parasitic ...

 

Wilayah yang memiliki peranan penting dalam agama Buddha berada di sekitar Dataran Rendah Indo-Gangga, India Utara dan Nepal Selatan, antara New Delhi dan Rajgir. Wilayah tersebut adalah tempat di mana Siddhartha Gautama tinggal dan mengajar, dan situs-situs utama yang berhubungan dengan kehidupannya kini menjadi tempat ziarah penting bagi umat Buddha dan Hindu. Di sisi lain, terdapat pula situs-situs Buddha lainnya di berbagai negara yang dapat dikunjungi sebagai situs ziarah. Situs terkait ...

Fictional player character in the 2016 video game Overwatch An editor has performed a search and found that sufficient sources exist to establish the subject's notability. These sources can be used to expand the article and may be described in edit summaries or found on the talk page. The article may include original research, or omit significant information about the subject. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and re...

 

State park in Pennsylvania, United States Prince Gallitzin State Park Cambria County, PennsylvaniaIUCN category III (natural monument or feature)A boat on Glendale Lake in the parkLocation of Prince Gallitzin State Park in PennsylvaniaShow map of PennsylvaniaPrince Gallitzin State Park (the United States)Show map of the United StatesLocationCambria, Pennsylvania, United StatesCoordinates40°40′30″N 78°32′13″W / 40.67500°N 78.53694°W / 40.67500; -78.53694Area...

 

2019 American filmPaper TigerPromotional posterDirected byMike BinderWritten byBill BurrProduced byBill BurrMike BinderDave BeckyMike BertolinaNicky Kentish BarnesStarringBill BurrCinematographyNathanial HillEdited byBijan ShamsDistributed byNetflixRelease date September 10, 2019 (2019-09-10) (Netflix) Running time67 minutesCountryUnited StatesLanguageEnglish Royal Albert Hall in London, the venue of Paper Tiger Paper Tiger is a 2019 stand-up comedy special by American come...

2010 South Korean filmThe RecipeFilm posterDirected byAnna LeeWritten byAnna Lee Jang JinProduced byKim Jin-youngStarring Ryu Seung-ryong Lee Yo-won Lee Dong-wook CinematographyNa Hui-seokEdited byKim Sang-bum Kim Jae-bumMusic byHan Jae-gwonProductioncompanyFilm It SudaDistributed byCJ EntertainmentRelease date October 21, 2010 (2010-10-21) Running time107 minutesCountrySouth KoreaLanguageKoreanBox officeUS$293,898[1] The Recipe (Korean: 된장; RR:...

 

Tercera División RFEF de FútSalDatos generalesDeporte Fútbol salaSede España EspañaContinente UEFADatos históricosFundación 1989Datos de competencia Ascenso a Segunda División B de fútbol sala Descenso a Divisiones regionales de fútbol sala de España[editar datos en Wikidata] La Tercera División RFEF de FútSal (hasta la temporada 2010-2011 se llamaba Primera Nacional B) es la cuarta división del fútbol sala español. Es la inmediatamente inferior a la Segunda Div...

 

Las Lagunas localidadBanderaEscudo Las LagunasUbicación de Las Lagunas en España. Las LagunasUbicación de Las Lagunas en la provincia de Málaga.País  España• Com. autónoma  Andalucía• Provincia  Málaga• Municipio  MijasUbicación 36°32′38″N 4°38′15″O / 36.543785, -4.637457Población 49 333 hab. (INE 2022)Gentilicio lagunero, -aCódigo postal 29651Patrona Virgen de la Paz[editar datos en Wiki...

1918 German filmYour Big SecretGerman film posterGermanIhr großes Geheimnis Directed byJoe MayWritten byRudolf BaronJoe MayMia MayProduced byJoe MayStarringMia MayKäthe HaackJohannes RiemannCinematographyMax LutzeProductioncompanyMay-FilmDistributed byUFARelease date 10 October 1918 (1918-10-10) CountryGermanyLanguagesSilentGerman intertitles Your Big Secret (German: Ihr großes Geheimnis) is a 1918 German silent drama film directed by Joe May and starring Mia May, Käthe Haa...

 

American physician and politician Robert Blood redirects here. For the English footballer, see Bobby Blood. Robert Blood65th Governor of New HampshireIn officeJanuary 2, 1941 – January 4, 1945Preceded byFrancis P. MurphySucceeded byCharles M. DaleMember of the New Hampshire SenateIn office1937–1940Member of the New Hampshire House of RepresentativesIn office1935–1936 Personal detailsBornNovember 10, 1887Enfield, New Hampshire, U.S.DiedAugust 3, 1975 (aged 87)Concord, New Hampsh...

 

  لمعانٍ أخرى، طالع لمناصرة (توضيح). لمناصرة تقسيم إداري البلد المغرب  الجهة طنجة تطوان الحسيمة الإقليم شفشاون الدائرة باب تازة الجماعة القروية فيفي المشيخة بني مدارسين السكان التعداد السكاني 500 نسمة (إحصاء 2004)   • عدد الأسر 81 معلومات أخرى التوقيت ت ع م±00:00 (توقيت ق...

2012 single by Ricki-Lee CoulterBurn It DownSingle by Ricki-Lee Coulterfrom the album Fear & Freedom Released7 December 2012 (2012-12-07)GenreDance-popLength3:55LabelEMISongwriter(s) Ricki-Lee Coulter Samantha Powell Producer(s) Anthony Maniscalco Sammy Jay Ricki-Lee Coulter singles chronology Crazy (2012) Burn It Down (2012) Come & Get in Trouble with Me (2013) Burn It Down is a song recorded by Australian singer Ricki-Lee Coulter. It was written by Coulter and Sam...

 

Legal right of African Americans to vote in elections Further information: Civil rights movement (1865–1896), Civil rights movement (1896–1954), and Civil Rights Movement Lyndon Johnson signs the Voting Rights Act of 1965 African Americans were fully enfranchised in practice throughout the United States by the Voting Rights Act of 1965. Prior to the Civil War and the Reconstruction Amendments to the U.S. Constitution, some Black people in the United States had the right to vote, but this ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!