The Hanle effect,[1] also known as zero-field level crossing,[2] is a reduction in the polarization of light when the atoms emitting the light are subject to a magnetic field in a particular direction, and when they have themselves been excited by polarized light.
Experiments which utilize the Hanle effect include measuring the lifetime of excited states,[3] and detecting the presence of magnetic fields.[4]
An early theoretical treatment of level crossing effect was given by Gregory Breit.[11]
Theory
Classical model
The classical explanation for this effect involves the Lorentz oscillator model, which treats the electron bound to the nucleus as a classical oscillator. When light interacts with this oscillator, it sets the electron in motion in the direction of its polarization. Consequently, the radiation emitted by this moving electron is polarized in the same direction as the incident light, as explained by classical electrodynamics.
Applications
Observation of the Hanle effect on the light emitted by the Sun is used to indirectly measure the magnetic fields within the Sun, see:
The effect was initially considered in the context of gasses, followed by applications to solid state physics.[12] It has been used to measure both the states of localized electrons[13] and free electrons.[14] For spin-polarized electrical currents, the Hanle effect provides a way to measure the effective spin lifetime in a particular device.[15]
Related effects
The zero-field Hanle level crossings involve magnetic fields, in which the states which are degenerate at zero magnetic field are split due to the Zeeman effect. There is also the closely analogous zero-field Stark level crossings with electric fields, in which the states which are degenerate at zero electric field are split due to the Stark effect. Tests of zero field Stark level crossings came after the Hanle-type measurements, and are generally less common, due to the increased complexity of the experiments.[16]
^Hanle, W. (1925). "Die magnetische Beeinflussung der Resonanzfluoreszenz". Ergebnisse der Exakten Naturwissenschaften (in German). Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 214–232. doi:10.1007/978-3-642-94259-4_7. ISBN978-3-642-93859-7.