Hatice Efsun Arda spent time with her mother, a nurse practitioner, at a hospital and in clinical laboratories. This early exposure encouraged her to study biology and medicine. Arda completed a B.S. in molecular biology and genetics at Boğaziçi University.[1]
Interested in gene regulatory networks and developmental biology, Arda joined the laboratory of Seung K. Kim [Wikidata] at Stanford University for her postdoctoral training. As a JDRF fellow, she developed cell sorting methods to purify primary pancreatic cells from children and adults, and used RNA sequencing to reveal hundreds of genes that are differentially regulated during the first 10 years of human lifespan, several of which are linked by association studies to diabetes risk. To understand how pancreatic cell type-specific gene expression programs are controlled at the genomic level, she then combined cell sorting with genomic techniques, like ATAC-Seq to delineate the regulatory chromatin landscape of human pancreatic cell types. This work revealed thousands of putative enhancer regions that explain cell type-specific gene expression in the human pancreas.[2]
In 2016, Arda's research showed that the beta cells in the human pancreas continue their maturation after birth. Arda and colleagues examined the gene expression and chromatin profiles of pancreas cells isolated from children and adults and found specific gene-expression programs that are turned on after the age of 10. The study was the first to demonstrate these differences at a global level, and the team uncovered new factors potentially mediating this process.[1][4]
To investigate genomic regulation, Arda continued to research the DNA elements that control pancreas-cell specification, identity, and function. Arda and co-authors and generated an atlas of genomic elements specific to the main cell types in the human pancreas. She identified unique regions in our genomes that control cell-type-specific gene expression in human pancreas cells. These regions also turned out to harbor more disease-risk variants associated with diabetes or pancreas cancer than other parts of the human genome.[1][5]
Arda's laboratory aims to delineate the gene regulatory networks that control the development, expansion and function of human pancreatic cells. Her research group combines genomic approaches with use of primary human cells, stem cell and genome-editing technologies to build maps of regulatory genomes governing the establishment and growth of human pancreatic cell lineages. Arda characterizes the cell lineages that give rise to human pancreas using single cell sequencing.[2]
References
^ abcCarter, Laura Stephenson (2019-12-19). "Getting to Know 11 Stadtmans". NIH Intramural Research Program. Retrieved 2020-05-05. This article incorporates text from this source, which is in the public domain.
^ abcd"H. Efsun Arda, Ph.D."Center for Cancer Research. 2017-09-25. Retrieved 2020-05-05. This article incorporates text from this source, which is in the public domain.
^Arda, H. (2010-07-30). C. Elegans Metabolic Gene Regulatory Networks: A Dissertation. GSBS Dissertations and Theses (Thesis). University of Massachusetts Medical School. doi:10.13028/9v59-hc11.