In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950[1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.
Definition
Grubbs's test is based on the assumption of normality. That is, one should first verify that the data can be reasonably approximated by a normal distribution before applying the Grubbs test.[2]
Grubbs's test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers.[3]
Grubbs's test is defined for the following hypotheses:
H0: There are no outliers in the data set
Ha: There is exactly one outlier in the data set
The Grubbs test statistic is defined as
with and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.
Grubbs's test can also be defined as a one-sided test, replacing α/(2N) with α/N. To test whether the minimum value is an outlier, the test statistic is
with Ymin denoting the minimum value. To test whether the maximum value is an outlier, the test statistic is