A Bose–Einstein condensate (BEC) is a gas of bosons that are in the same quantum state, and thus can be described by the same wavefunction. A free quantum particle is described by a single-particle Schrödinger equation. Interaction between particles in a real gas is taken into account by a pertinent many-body Schrödinger equation. In the Hartree–Fock approximation, the total wave-function of the system of bosons is taken as a product of single-particle functions :
where is the coordinate of the -th boson. If the average spacing between the particles in a gas is greater than the scattering length (that is, in the so-called dilute limit), then one can approximate the true interaction potential that features in this equation by a pseudopotential. At sufficiently low temperature, where the de Broglie wavelength is much longer than the range of boson–boson interaction,[3] the scattering process can be well approximated by the s-wave scattering (i.e. in the partial-wave analysis, a.k.a. the hard-sphere potential) term alone. In that case, the pseudopotential model Hamiltonian of the system can be written as
where is the mass of the boson, is the external potential, is the boson–boson s-wave scattering length, and is the Dirac delta-function.
The variational method shows that if the single-particle wavefunction satisfies the following Gross–Pitaevskii equation
the total wave-function minimizes the expectation value of the model Hamiltonian under normalization condition Therefore, such single-particle wavefunction describes the ground state of the system.
The non-linearity of the Gross–Pitaevskii equation has its origin in the interaction between the particles: setting the coupling constant of interaction in the Gross–Pitaevskii equation to zero (see the following section) recovers the single-particle Schrödinger equation describing a particle inside a trapping potential.
The Gross–Pitaevskii equation is said to be limited to the weakly interacting regime. Nevertheless, it may also fail to reproduce interesting phenomena even within this regime.[4][5] In order to study the BEC beyond that limit of weak interactions, one needs to implement the Lee-Huang-Yang (LHY) correction.[6][7] Alternatively, in 1D systems one can use either an exact approach, namely the Lieb-Liniger model,[8] or an extended equation, e.g. the Lieb-Liniger Gross–Pitaevskii equation[9] (sometimes called modified[10] or generalized nonlinear Schrödinger equation[11]).
Form of equation
The equation has the form of the Schrödinger equation with the addition of an interaction term. The coupling constant is proportional to the s-wave scattering length of two interacting bosons:
where is the wavefunction, or order parameter, and is the external potential (e.g. a harmonic trap). The time-independent Gross–Pitaevskii equation, for a conserved number of particles, is
where is the chemical potential, which is found from the condition that the number of particles is related to the wavefunction by
From the time-independent Gross–Pitaevskii equation, we can find the structure of a Bose–Einstein condensate in various external potentials (e.g. a harmonic trap).
The time-dependent Gross–Pitaevskii equation is
From this equation we can look at the dynamics of the Bose–Einstein condensate. It is used to find the collective modes of a trapped gas.
Solutions
Since the Gross–Pitaevskii equation is a nonlinearpartial differential equation, exact solutions are hard to come by. As a result, solutions have to be approximated via a myriad of techniques.
Exact solutions
Free particle
The simplest exact solution is the free-particle solution, with :
This solution is often called the Hartree solution. Although it does satisfy the Gross–Pitaevskii equation, it leaves a gap in the energy spectrum due to the interaction:
According to the Hugenholtz–Pines theorem,[12] an interacting Bose gas does not exhibit an energy gap (in the case of repulsive interactions).
Soliton
A one-dimensional soliton can form in a Bose–Einstein condensate, and depending upon whether the interaction is attractive or repulsive, there is either a bright or dark soliton. Both solitons are local disturbances in a condensate with a uniform background density.
If the BEC is repulsive, so that , then a possible solution of the Gross–Pitaevskii equation is
where is the value of the condensate wavefunction at , and is the coherence length (a.k.a. the healing length,[3] see below). This solution represents the dark soliton, since there is a deficit of condensate in a space of nonzero density. The dark soliton is also a type of topological defect, since flips between positive and negative values across the origin, corresponding to a phase shift.
For the solution is
where the chemical potential is . This solution represents the bright soliton, since there is a concentration of condensate in a space of zero density.
Healing length
The healing length gives the minimum distance over which the order parameter can heal, which describes how quickly the wave function of the BEC can adjust to changes in the potential. If the condensate density grows from 0 to n within a distance ξ, the healing length can calculated by equating the
quantum pressure and the interaction energy:[3][13]
The healing length must be much smaller than any length scale in the solution of the single-particle wavefunction. The healing length also determines the size of vortices that can form in a superfluid. It is the distance over which the wavefunction recovers from zero in the center of the vortex to the value in the bulk of the superfluid (hence the name "healing" length).
Variational solutions
In systems where an exact analytical solution may not be feasible, one can make a variational approximation. The basic idea is to make a variational ansatz for the wavefunction with free parameters, plug it into the free energy, and minimize the energy with respect to the free parameters.
If the number of particles in a gas is very large, the interatomic interaction becomes large so that the kinetic energy term can be neglected in the Gross–Pitaevskii equation. This is called the Thomas–Fermi approximation and leads to the single-particle wavefunction
And the density profile is
In a harmonic trap (where the potential energy is quadratic with respect to displacement from the center), this gives a density profile commonly referred to as the "inverted parabola" density profile.[3]
Bogoliubov approximation
Bogoliubov treatment of the Gross–Pitaevskii equation is a method that finds the elementary excitations of a Bose–Einstein condensate. To that purpose, the condensate wavefunction is approximated by a sum of the equilibrium wavefunction and a small perturbation :
Then this form is inserted in the time-dependent Gross–Pitaevskii equation and its complex conjugate, and linearized to first order in :
Assuming that
one finds the following coupled differential equations for and by taking the parts as independent components:
For a homogeneous system, i.e. for , one can get from the zeroth-order equation. Then we assume and to be plane waves of momentum , which leads to the energy spectrum
For large , the dispersion relation is quadratic in , as one would expect for usual non-interacting single-particle excitations. For small , the dispersion relation is linear:
with being the speed of sound in the condensate, also known as second sound. The fact that shows, according to Landau's criterion, that the condensate is a superfluid, meaning that if an object is moved in the condensate at a velocity inferior to s, it will not be energetically favorable to produce excitations, and the object will move without dissipation, which is a characteristic of a superfluid. Experiments have been done to prove this superfluidity of the condensate, using a tightly focused blue-detuned laser.[19] The same dispersion relation is found when the condensate is described from a microscopical approach using the formalism of second quantization.
Superfluid in rotating helical potential
The optical potential well might be formed by two counterpropagating optical vortices with wavelengths , effective width and topological charge :
where . In cylindrical coordinate system the potential well have a remarkable double-helix geometry:[20]
In a reference frame rotating with angular velocity , time-dependent Gross–Pitaevskii equation with helical potential is[21]
where is the angular-momentum operator.
The solution for condensate wavefunction is a superposition of two phase-conjugated matter–wave vortices:
The macroscopically observable momentum of condensate is
where is number of atoms in condensate.
This means that atomic ensemble moves coherently along axis with group velocity whose direction is defined by signs of topological charge and angular velocity :[22]
The angular momentum of helically trapped condensate is exactly zero:[21]
Numerical modeling of cold atomic ensemble in spiral potential have shown the confinement of individual atomic trajectories within helical potential well.[23]
Derivations and Generalisations
The Gross–Pitaevskii equation can also be derived as the semi-classical limit of the many body theory of s-wave interacting identical bosons represented in terms of coherent states.[24] The semi-classical limit is reached for a large number of quanta, expressing the field theory either in the positive-P representation (generalised Glauber-Sudarshan P representation) or Wigner representation.
Finite-temperature effects can be treated within a generalised Gross–Pitaevskii equation by including scattering between condensate and noncondensate atoms,[25][26][27][28][29] from which the Gross–Pitaevskii equation may be recovered in the low-temperature limit.[30][31]
^Zaremba, E; Nikuni, T; Griffin, A (1999). "Dynamics of Trapped Bose Gases at Finite Temperatures". Journal of Low Temperature Physics. 116 (3–4): 277–345. doi:10.1023/A:1021846002995. S2CID37753.
^Stoof, H T C (1999). "Coherent versus incoherent dynamics during Bose-Einstein condensation in atomic gases". Journal of Low Temperature Physics. 114 (1–2): 11–108. doi:10.1023/A:1021897703053. S2CID16107086.
Overview of the topic Nations with which Switzerland has diplomatic relations. This article is part of a series on thePolitics of Switzerland Constitution Human rights Federal Council Members (by seniority) Alain Berset (President) Guy Parmelin Ignazio Cassis Viola Amherd (Vice President) Karin Keller-Sutter Albert Rösti Élisabeth Baume-Schneider Federal Chancellor Walter Thurnherr Federal administration Federal Assembly Council of States (members) National Council (members) Political parti...
Malloderma pascoei Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Malloderma Spesies: Malloderma pascoei Malloderma pascoei adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Malloderma, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hi...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: La Toba – news · newspapers · books · scholar · JSTOR (October 2012) (Learn how and when to remove this template message) Place in Castile-La Mancha, SpainLa Toba, Spain FlagSealLa Toba, SpainShow map of Province of GuadalajaraLa Toba, SpainShow map of Castilla-La ManchaLa Toba,...
Sociedade Brasileira de Pesquisa OperacionalQuadro profissionalTipo organizaçãoeditor de acesso abertoPaís BrasilOrganizaçãoAfiliação Sociedade Brasileira para o Progresso da CiênciaWebsite www.sobrapo.org.breditar - editar código-fonte - editar Wikidata A Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) foi fundada em 1969, após a realização do I Simpósio Brasileiro de Pesquisa Operacional (SBPO) no Instituto Tecnológico de Aeronáutica, em São José dos Campos. De...
Tu bije serce Europy! Wybieramy hit na Eurowizję 2023 Daten zur Vorentscheidung Land Polen Polen Ausstrahlender Sender Produzierender Sender Ort TVP Studio 5, Warschau Datum 26. Februar 2023 Teilnehmerzahl 10 Zahl der Beiträge 10 Abstimmung 50 % Juryvoting50 % Televoting Eröffnungsact Kalush Orchestra, Stefania[1] Pausenfüller Edyta Górniak, Efendi, Krystian Ochman Moderation Aleksander SikoraIda NowakowskaMałgorzata Tomaszewska Tu bije serce Europy! Wybieramy hit...
Du khách tới Pakistan phải xin thị thực từ một trong những phái bộ ngoại giao của Pakistan.[1] Phái bộ ngoại giao của Pakistani tại nước ngoài cung cấp nhiều loại thị thực, và một số du khách có thể xin thị thực tại cửa khẩu nếu họ đi theo tour hoặc đi công tác. Pakistan không cung cấp thị thực tại cửa khẩu cho khách du lịch đi lẻ, mặc dù công dân một số quốc gia được miễn th...
Artéria gástrica direita Artéria gástrica direitaA artéria celíaca e seus ramos; o estômago foi levantado e o peritônio removido. A artéria gástrica direita é o nº2. (a seta de baixo) Nome em Latim arteria gastrica dextra Gray's subject # 604 Veia Veia gástrica direita A artéria gástrica direita (ou artéria pilórica) sai da artéria hepática própria, sobre o piloro, passando da direita para a esquerda ao longo da curvatura menor do estômago, suprindo-o com seus ramos e ana...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. 2,4,6-Triklorofenol Nama Nama IUPAC 2,4,6-Trichlorophenol Penanda Nomor CAS 88-06-2 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:28755 N ChemSpider 6648 Y Nomor EC Nomor RTECS {{{value}}} Nomor UN 2020 CompTox Dash...
أبو العتاهية إسماعيل رسمٌ تخيُّليّ لِلشاعر أبي العتاهية. معلومات شخصية اسم الولادة إسماعيل بن القاسم بن سويد العنزي الميلاد 130هـ/747معين التمر بالقرب من كربلاء الوفاة 3 جمادى الآخرة سنة 211هـ أو 213هـ،826مبغداد الجنسية عربي الكنية أبو إسحاق اللقب أبو العتاهية الديانة الإسلا...
Diadúmeno, de Policleto (3.er cuarto del siglo V a. C.). El arte de la Antigua Grecia es el estilo elaborado por los antiguos artistas griegos, caracterizado por la búsqueda de la «belleza ideal», recreando el mundo ideal del modelo platónico, o mediante la imitación de la naturaleza en el sentido de la mímesis aristotélica. La cultura desarrollada por los antiguos griegos establece los fundamentos de la cultura occidental. De este, surgieron los conceptos y principios ...
BMW Manufacturing (Thailand) Co., Ltd.TypeSubsididaryFounded1998; 25 years ago (1998)HeadquartersRayong, ThailandProductsAutomobiles, engines, motorcycles BMW Manufacturing (Thailand) Co., Ltd. is an automobile manufacturing company based Rayong, in the Rayong Province of eastern Thailand and a subsidiary of BMW Group Thailand.[1] History The BMW Group Thailand was founded in 1998 as a subsidiary of BMW AG and consists of three companies: BMW (Thailand) Co., Ltd. for...
Uruguayan rugby union player For the victim of a 2014 police shooting, see Alex Nieto. Rugby playerAlejandro Martin Nieto SerraAlejandro Nieto Serra at 2016 Americas Rugby Championship vs USABirth nameAlejandro Martin Nieto SerraDate of birth (1988-01-07) 7 January 1988 (age 35)Place of birthMontevideo, UruguayHeight1.86 m (6 ft 1 ¼ in)Weight108 kg (7 st 0 lb; 238 lb)[1][2]Rugby union careerPosition(s) Number 8Senior careerYears Team Apps (Points)2019 Houston S...
Seit 2019 quert die Senegambia Bridge den Gambia-Fluss Vor Fertigstellung der Brücke musste der Fluss mit einer Fähre überquert werden Der Trans-Gambia Highway bei Farafenni, Gambia Der Trans-Gambia Highway ist eine wichtige Fernstraße im westafrikanischen Staat Gambia. Er verläuft in Nord-Süd-Richtung und ist für das Nachbarland Senegal im Zuge der Nationalstraße N 4 als Transitstrecke ein wirtschaftlich sehr bedeutender Lückenschluss, denn so verbindet sie als Transgambienne die s...
Species of gastropod Alvania grancanariensis Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Mollusca Class: Gastropoda Subclass: Caenogastropoda Order: Littorinimorpha Family: Rissoidae Genus: Alvania Species: A. grancanariensis Binomial name Alvania grancanariensisSegers, 1999 Alvania grancanariensis is a species of minute sea snail, a marine gastropod mollusk or micromollusk in the family Rissoidae.[1] Distribution The species has been founded on the shor...
1967 aviation accident Delta Air Lines Flight 9877N802E, the accident aircraft seen before the crash in a previous liveryAccidentDateMarch 30, 1967SummaryStalled during a two-engine out approachSiteNew Orleans International Airport, Kenner, Louisiana, United States29°59′N 90°16′W / 29.983°N 90.267°W / 29.983; -90.267Total fatalities19AircraftAircraft typeDouglas DC-8-51OperatorDelta Air LinesRegistrationN802EFlight originNew Orleans International Airport, ...
Football clubC.D. Sonsonate Sonsonate F.C.Full nameSonsonate Fútbol ClubNickname(s)Los CocoterosFounded2 March 1948; 75 years ago (2 March 1948), as Sonsonate FC 9 September 2009; 14 years ago (9 September 2009) as Futbol Club SonsonateGroundEstadio Anna Mercedes CamposCapacity8,000President TBDManager Rubén da SilvaLeague Primera División2020 AperturaOverall: 8th Playoffs: QuarterfinalWebsiteClub website Home colours Away colours Futbol Club Sonsonate is a Salvad...
An editor has nominated this article for deletion.You are welcome to participate in the deletion discussion, which will decide whether or not to retain it.Feel free to improve the article, but do not remove this notice before the discussion is closed. For more information, see the guide to deletion.Find sources: Dragon Hill Lodge – news · newspapers · books · scholar · JSTOR%5B%5BWikipedia%3AArticles+for+deletion%2FDragon+Hill+Lodge%5D%5DAFD The topic ...
South Korean television series Bad GuysPromotional poster for Bad GuysAlso known asBad BoysGenrePolice procedural Crime Thriller ActionCreated byPark Ji-young (CJ ENM)Kim Cheol-yeonWritten byHan Jung-hoon [ko]Directed byKim Jung-min [ko]Starring Kim Sang-joong Park Hae-jin Ma Dong-seok Jo Dong-hyuk Kang Ye-won ComposerKim Jang-wooCountry of originSouth KoreaOriginal languageKoreanNo. of episodes11ProductionExecutive producerPark Ho-shikProduction locationKoreaCamera ...
Nilen elv Nilen15°38′25″N 32°30′20″E / 15.640138888889°N 32.5055°E / 15.640138888889; 32.5055 Topografisk kart over elvelaupa og bassenga til Nilen. Topografisk kart over elvelaupa og bassenga til Nilen. Wikimedia Commons: Nile Nilen er den lengste elva på jorda.[a][treng kjelde] Elva er rekna å vera mellom 6300 og 7200 km lang. Elva Kagera, som renn ut i Victoriasjøen i Uganda, vert rekna for å vera kjelda til Nilen. Derifrå ...