Gauss–Lucas theorem

In complex analysis, a branch of mathematics, the Gauss–Lucas theorem gives a geometric relation between the roots of a polynomial P and the roots of its derivative P'. The set of roots of a real or complex polynomial is a set of points in the complex plane. The theorem states that the roots of P' all lie within the convex hull of the roots of P, that is the smallest convex polygon containing the roots of P. When P has a single root then this convex hull is a single point and when the roots lie on a line then the convex hull is a segment of this line. The Gauss–Lucas theorem, named after Carl Friedrich Gauss and Félix Lucas, is similar in spirit to Rolle's theorem.

Illustration of Gauss–Lucas theorem, displaying the evolution of the roots of the derivatives of a polynomial.

Formal statement

If P is a (nonconstant) polynomial with complex coefficients, all zeros of P' belong to the convex hull of the set of zeros of P.[1]

Special cases

It is easy to see that if is a second degree polynomial, the zero of is the average of the roots of P. In that case, the convex hull is the line segment with the two roots as endpoints and it is clear that the average of the roots is the middle point of the segment.

For a third degree complex polynomial P (cubic function) with three distinct zeros, Marden's theorem states that the zeros of P' are the foci of the Steiner inellipse which is the unique ellipse tangent to the midpoints of the triangle formed by the zeros of P.

For a fourth degree complex polynomial P (quartic function) with four distinct zeros forming a concave quadrilateral, one of the zeros of P lies within the convex hull of the other three; all three zeros of P' lie in two of the three triangles formed by the interior zero of P and two others zeros of P.[2]

In addition, if a polynomial of degree n of real coefficients has n distinct real zeros we see, using Rolle's theorem, that the zeros of the derivative polynomial are in the interval which is the convex hull of the set of roots.

The convex hull of the roots of the polynomial

particularly includes the point

Proof

Proof

By the fundamental theorem of algebra, is a product of linear factors as

where the complex numbers are the – not necessarily distinct – zeros of the polynomial P, the complex number α is the leading coefficient of P and n is the degree of P.

For any root of , if it is also a root of , then the theorem is trivially true. Otherwise, we have for the logarithmic derivative

Hence

.

Taking their conjugates, and dividing, we obtain as a convex sum of the roots of :

See also

Notes

  1. ^ Marden 1966, Theorem (6,1).
  2. ^ Rüdinger, A. (2014). "Strengthening the Gauss–Lucas theorem for polynomials with Zeros in the interior of the convex hull". Preprint. arXiv:1405.0689. Bibcode:2014arXiv1405.0689R.

References

Read other articles:

Prilly Mahatei Latuconsina, S.I.Kom. atau dikenal sebagai Prilly Latuconsina (lahir 15 Oktober 1996) adalah pemeran, presenter, penyanyi, model, pengusaha, aktivis, penulis, kreator konten dan produser eksekutif asal Indonesia berketurunan Ambon dan Sunda. Prilly memulai kariernya di dunia hiburan Indonesia pada tahun 2009. Prilly pertama kali muncul di layar kaca membawakan program Si Bolang untuk dua episode spesial Lombok, Nusa Tenggara Barat. Terjun di dunia entertainment sejak kecil dan ...

 

日経エンタテインメント! ジャンル 情報誌刊行頻度 月刊(毎月4日)発売国 日本言語 日本語定価 780円(2020年時点)出版社 日経BP社発行人 加藤栄編集長 山本伸夫副編集長 伊藤哲郎ISSN 1342-842X雑誌名コード 07183-4刊行期間 1997年4月号 -ウェブサイト 公式サイトテンプレートを表示 『日経エンタテインメント!』(にっけいエンタテインメント、略称:日経エンタ)は、日本

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة م...

レタウニツァ・ブラトウ・ゴリシェク 施設情報所在地国 スロベニア自治体 プラニツァ開場 1969年3月21日改修 1979年、2000年、2003年、2005年拡張 1985年、1994年、2015年サイズK点 200 mヒルサイズ 240 mヒルレコード 252.0 m小林陵侑(2019年3月24日)大会世界選手権 スキーフライング世界選手権(1972年、1979年、1985年、1994年、2004年、2010年)ワールドカップ 2017/18 男子第29-31戦(FHx2, T...

 

1980 crime drama film by Paul Schrader For the soundtrack to the film, see American Gigolo (soundtrack). For other uses, see American Gigolo (disambiguation). American GigoloTheatrical release posterDirected byPaul SchraderWritten byPaul SchraderProduced byJerry BruckheimerStarring Richard Gere Lauren Hutton Bill Duke Héctor Elizondo Frances Bergen Carol Bruce CinematographyJohn BaileyEdited byRichard HalseyMusic byGiorgio MoroderProductioncompanyParamount PicturesDistributed byParamount Pic...

 

KRI Teluk Bintuni Karier (ID) ProduksiPT. Daya Radar Utama 5 unit PT. Dok & Perkapalan Kodja Bahari (persero) 2 unitPT. Bandar Abadi 2 unit Mulai dibuat 2015 Diluncurkan 2015 dan mulai bertugas sejak 2018 di TNI AL Dibeli2015 oleh TNI Angkatan Laut Status Aktif Pelabuhan utamaArmada Timur TNI-AL Karakteristik umum Berat benaman 2300 ton Panjang 120 meter (393,70 ft) Lebar 13 meter (42,65 ft) Draft3 meter (9,84 ft)Tenaga penggerakMesin diesel 2 x STX MAN 9L27 / 38 Kecepatan ...

Ordo Fransiskan SekulerOrdo Franciscanus SaecularisSingkatanFransiskan SekulerTanggal pendirian1221PendiriFransiskus dari AssisiTipeAsosiasi Umum KatolikKantor pusatRoma, ItaliaMenteri JenderalTibor Kauser[1]Badan utamaKonsili InternasionalSitus webwww.ciofs.org Ordo Fransiskan Sekuler (bahasa Latin: Ordo Franciscanus Saecularis, singkatan pos-nominal O.F.S.; juga disebut Ordo Ketiga Fransiskan) merupakan sebuah asosiasi kaum awam yang saleh yang didirikan pada tahun 1222 di kota ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alpha Mu Gamma – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message) Alpha Mu GammaΑΜΓFoundedApril 29, 1931; 92 years ago (1931-04-29)Los Angeles City CollegeTypeHonorAffiliationIndep...

 

Place in Styria, AustriaSankt Georgen am KreischbergView of Sankt Georgen ob Murau FlagCoat of armsSankt Georgen am KreischbergLocation within AustriaCoordinates: 47°06′36″N 14°03′00″E / 47.11000°N 14.05000°E / 47.11000; 14.05000CountryAustriaStateStyriaDistrictMurauGovernment • MayorCäcilia Spreitzer (ÖVP)Area[1] • Total111.56 km2 (43.07 sq mi)Elevation864 m (2,835 ft)Population (2018-01-01)&#...

2017 Japanese filmFairy Tail: Dragon CryTheatrical release posterDirected byTatsuma MinamikawaScreenplay byShōji YonemuraBased onFairy Tailby Hiro MashimaProduced byNorio YamakawaTetsuya EndōYōhei ItōNoritoshi SatōYang XinruiKazuo ŌnukiYūya YoshidaStarring Tetsuya Kakihara Aya Hirano Rie Kugimiya Yuichi Nakamura Sayaka Ōhara Satomi Satō Yui Horie Makoto Furukawa Aoi Yūki Jiro Saito Chiaki Takahashi Ryōta Takeuchi Taku Yashiro CinematographyYoshiaki KimuraMusic byYasuharu TakanashiP...

 

For the New Zealand electorate, see Suburbs of Nelson. Football clubNelson Suburbs FCFull nameNelson Suburbs Football ClubNickname(s)SuburbsFounded1962GroundSaxton Field, NelsonCoachNeil ConnellLeagueSouthern League2023Southern League, 6th of 10WebsiteClub website Home colours Away colours Nelson Suburbs FC is a football club in Nelson, New Zealand. They compete in the Mainland Premier League. They have won the Mainland Premier League three times. Nelson Suburbs FC has strong ties with the re...

 

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Junho de 2019) Duque de Wellington Duque de Wellington Pariato  Inglaterra Criação Jorge III da Grã-Bretanha1814 Ordem Nobreza Titulada Tipo Hereditário 1.º Titular Arthur Wellesley, 1.º Duque de Wellington Linhagem Casa de Stuart Títulos Subsidiár...

German tractor Motor vehicle Unimog 70200A Unimog 70200 on display in the Mercedes-Benz MuseumOverviewTypeTractorManufacturerBoehringer [de]Also calledUnimog, BoehringerProduction06.1948-04.1951AssemblyBoehringer plant GöppingenPowertrainEngineOM 636 (Diesel,18.4 kW or 24.7 hp or 25.0 PS)Transmission6-speed manual gearbox, two reverse gearsDimensionsWheelbase1,720 mm (67.7 in)Length3,520 mm (138.6 in)Width1,630 mm (64.2 in)Height...

 

Canadian reality show CNTM redirects here. For other uses, see CNTM (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Canada's Next Top Model – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this template message) Canada's Next Top ModelCanada's Next Top ...

 

Automobile factory in Moraine, Ohio, United States View of the factory in 2012 Moraine Assembly was a General Motors automobile factory in Moraine, Ohio, United States, a suburb of Dayton. A Frigidaire appliance plant had originally operated on the site from 1951 to 1979. Starting in 1981, the Chevrolet S-10 small pickup was produced. This same model was produced by Shreveport Assembly. In 1987 through 1994 the plant produced the rolling chassis for the Grumman LLV Postal Vehicle. From 2001 t...

Greek goddess of magic and crossroads For other uses, see Hecate (disambiguation). HecateGoddess of boundaries, transitions, crossroads, magic, the New Moon, necromancy, and ghosts.The Hecate Chiaramonti, a Roman sculpture of triple-bodied Hecate, after a Hellenistic original (Museo Chiaramonti, Vatican Museums)AnimalsDog, polecatSymbolPaired torches, dogs, serpents, keys, knives, and lions.ParentsPerses and AsteriaOffspringAegialeus, Circe, Empusa, Medea, ScyllaEquivalentsMesopotamian equiva...

 

Fourgcomune Fourg – Veduta LocalizzazioneStato Francia Regione Borgogna-Franca Contea Dipartimento Doubs ArrondissementBesançon CantoneSaint-Vit TerritorioCoordinate47°06′N 5°49′E / 47.1°N 5.816667°E47.1; 5.816667 (Fourg)Coordinate: 47°06′N 5°49′E / 47.1°N 5.816667°E47.1; 5.816667 (Fourg) Superficie12,32 km² Abitanti330[1] (2009) Densità26,79 ab./km² Altre informazioniCod. postale25440 Fuso orarioUTC+1 Codice...

 

Shopping center in Hougang, Singapore Hougang MallHougang MallLocation90 Hougang Avenue 10, Singapore 538766Coordinates1°22′21.35″N 103°53′36.62″E / 1.3725972°N 103.8935056°E / 1.3725972; 103.8935056Opening date1997; 26 years ago (1997)ManagementFrasers PropertyOwnerARMF (Hougang Mall) Private LimitedNo. of stores and services134No. of anchor tenants4Total retail floor area217,000 square feet (20,200 m2)No. of floors7Public transit ac...

American reality television series CheatersGenreRealityCreated byBobby GoldsteinWritten byBobby GoldsteinDirected byJohn McCalmont (2000–02)Kenneth M. Smith Jr. (2002–10)Presented byTommy HabeebJoey GrecoClark James GablePeter GunzTheme music composerBobby GoldsteinOpening themeBroken Hearted by Bill Mason and Bobby GoldsteinEnding themeBroken Hearted by Bill Mason and Bobby GoldsteinComposersBill Mason and Bobby GoldsteinCountry of originUnited StatesOriginal languageEnglishNo. of season...

 

Independencia de Guayaquil. Parte de las Guerras de independencia hispanoamericanas Fecha 9 de octubre de 1820Lugar Guayaquil, EcuadorResultado Creación de la Provincia Libre de Guayaquil.Inicio de la Guerra de Independencia de Ecuador.Beligerantes Guayaquil Imperio español Comandantes José de Olmedo José de Antepara José de Villamil León Febres Cordero Antonio Elizalde Francisco de Marcos Francisco Lavayen Gregorio Escobedo Luis Urdaneta Miguel de Letamendi Rafael Ximena Francisco Mar...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!