Furry's theorem

This triangle diagram is forbidden by Furry's theorem in quantum electrodynamics.

In quantum electrodynamics, Furry's theorem states that if a Feynman diagram consists of a closed loop of fermion lines with an odd number of vertices, its contribution to the amplitude vanishes. As a corollary, a single photon cannot arise from the vacuum or be absorbed by it. The theorem was first derived by Wendell H. Furry in 1937,[1] as a direct consequence of the conservation of energy and charge conjugation symmetry.

Theory

Quantum electrodynamics has a number of symmetries, one of them being the discrete symmetry of charge conjugation. This acts on fields through a unitary charge conjugation operator which anticommutes with the photon field as , while leaving the vacuum state invariant . Considering the simplest case of the correlation function of a single photon operator gives

so this correlation function must vanish.[2] For photon operators, this argument shows that under charge conjugation this picks up a factor of and thus vanishes when is odd. More generally, since the charge conjugation operator also anticommutes with the vector current , Furry's theorem states that the correlation function of any odd number of on-shell or off-shell photon fields and/or currents must vanish in quantum electrodynamics.

Since the theorem holds at the non-perturbative level, it must also hold at each order in perturbation theory.[3] At leading order this means that any fermion loop with an odd number of vertices must have a vanishing contribution to the amplitude. An explicit calculation of these diagrams reveals that this is because the diagram with a fermion going clockwise around the loop cancels with the second diagram where the fermion goes anticlockwise. The vanishing of the three vertex loop can also be seen as a consequence of the renormalizability of quantum electrodynamics since the bare Lagrangian does not have any counterterms involving three photons.[4]

Applications and limitations

Furry's theorem allows for the simplification of a number of amplitude calculations in quantum electrodynamics.[5] In particular, since the result also holds when photons are off-shell, all Feynman diagrams which have at least one internal fermion loops with an odd number of vertices have a vanishing contribution to the amplitude and can be ignored. Historically the theorem was important in showing that the scattering of photons by an external field, known as Delbrück scattering, does not proceed via a triangle diagram and must instead proceed through a box diagram.[1]

In the presence of a background charge density or a nonzero chemical potential, Furry's theorem is broken, although if both these vanish then it does hold at nonzero temperatures as well as at zero temperatures.[6] It also does not apply in the presence of a strong background magnetic field where photon splitting interactions are allowed, a process that may be detected in astrophysical settings such as around neutron stars.[7] The theorem also does not hold when Weyl fermions are involved in the loops rather than Dirac fermions, resulting in non-vanishing odd vertex number diagrams. In particular, the non-vanishing of the triangle diagram with Weyl fermions gives rise to the chiral anomaly, with the sum of these having to cancel for a quantum theory to be consistent.

While the theorem has been formulated in quantum electrodynamics, a version of it holds more generally. For example, while the Standard Model is not charge conjugation invariant due to weak interactions, the fermion loop diagrams with an odd number of photons attached will still vanish since these are equivalent to a purely quantum electrodynamical diagram. Similarly, any diagram involving such loops as sub-diagrams will also vanish. It is however no longer true that all odd number photon diagrams need to vanish. For example, relaxing the requirement of charge conjugation and parity invariance of quantum electrodynamics, as occurs when weak interactions are included, allows for a three-photon vertex term.[8] While this term does give rise to interactions, they only occur if two of the photons are virtual; searching for such interactions must be done indirectly, such as through bremsstrahlung experiments from electron-positron collisions.[9]

In non-Abelian Yang–Mills theories, Furry's theorem does not hold since these involve noncommuting color charges. For example, the quark triangle diagrams with three external gluons are proportional to two different generator traces and so they do not cancel.[10][11] However, charge conjugation arguments can still be applied in limited cases such as to deduce that the triangle diagram for a color neutral spin boson vanishes.[12]

See also

References

  1. ^ a b Furry, W. H. (1937-01-15). "A Symmetry Theorem in the Positron Theory". Physical Review. 51 (2): 125–129. Bibcode:1937PhRv...51..125F. doi:10.1103/PhysRev.51.125. ISSN 0031-899X.
  2. ^ Peskin, M.E.; Schroeder, D.V. (1995). "10". An Introduction to Quantum Field Theory. Westview Press. p. 318. ISBN 9780201503975.
  3. ^ Weinberg, S. (1995). "10". The Quantum Theory of Fields: Foundations. Vol. 1. Cambridge University Press. p. 428. ISBN 9780521670531.
  4. ^ Sterman, G. (1993). "11". An Introduction to Quantum Field Theory. Cambridge University Press. pp. 326–327. ISBN 978-0521311328.
  5. ^ Berestetskii, V.B. (1982). "8". Quantum Electrodynamics: Volume 4 (Course of Theoretical Physics). Butterworth-Heinemann. pp. 315–316. ISBN 978-0750633710.
  6. ^ Majumder, A.; Bourque, A.; Gale, C. (2004). "Broken symmetries and dilepton production from gluon fusion in a quark gluon plasma". Phys. Rev. C. 69 (6): 064901. arXiv:hep-ph/0311178. Bibcode:2004PhRvC..69f4901M. doi:10.1103/PhysRevC.69.064901. S2CID 118879778.
  7. ^ Adler, S.L. (1971). "Photon splitting and photon dispersion in a strong magnetic field". Annals of Physics. 67 (2): 599–647. Bibcode:1971AnPhy..67..599A. doi:10.1016/0003-4916(71)90154-0.
  8. ^ Delbourgo, R. (1976). "The three-photon vertex". J. Phys. G. 2 (11): 787. Bibcode:1976JPhG....2..787D. doi:10.1088/0305-4616/2/11/003. S2CID 250863523.
  9. ^ Basham, C.L.; Kabir, P.K. (1977). "Possible three-photon couplings". Phys. Rev. D. 15 (11): 3388–3393. Bibcode:1977PhRvD..15.3388B. doi:10.1103/PhysRevD.15.3388.
  10. ^ Dissertori, G. (2009). "3". Quantum Chromodynamics High Energy Experiments and Theory. Oxford University Press. pp. 85–86. ISBN 978-0199566419.
  11. ^ Smolyakov, N. V. (1982). "Furry theorem for non-abelian gauge Lagrangians". Theoretical and Mathematical Physics. 50 (3): 225–228. Bibcode:1982TMP....50..225S. doi:10.1007/BF01016449. ISSN 0040-5779. S2CID 119765674.
  12. ^ Englert, C.; Hackstein, C.; Spannowsky, M. (2010). "Measuring spin and CP from semihadronic ZZ decays using jet substructure". Phys. Rev. D. 82 (11): 114024. arXiv:1010.0676. Bibcode:2010PhRvD..82k4024E. doi:10.1103/PhysRevD.82.114024. S2CID 48357670.

Read other articles:

Hungarian musician (1899-1986) The native form of this personal name is Bárdos Lajos. This article uses Western name order when mentioning individuals. Lajos Bárdos in 1948 Lajos Bárdos (1 October 1899 – 18 November 1986) was a composer, conductor, music theorist, and professor of music at the Franz Liszt Academy of Music, in Budapest, Hungary, where he had previously studied under Albert Siklós and Zoltán Kodály. His younger brother, György Deák-Bárdos, was also a composer. To...

 

?Чорна ропуха Чорна ропуха уругвайська Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Земноводні (Amphibia) Підклас: Безпанцерні (Lissamphibia) Надряд: Батрахії (Batrachia) Ряд: Безхвості (Anura) Підряд: Neobatrachia Родина: Ропухові Рід: Чорна ропу...

 

Lokasi Kepulauan Miyako Lokasi Kepulauan Miyako di Prefektur Okinawa Kepulauan Miyako Kepulauan Miyako (宮古列島 atau 宮古諸島code: ja is deprecated , Miyako Rettō atau Miyako Shotō) adalah gugusan pulau kecil di sebelah barat Kepulauan Ryukyu. Kepulauan ini adalah bagian dari Kepulauan Sakishima, Jepang. Geografi Di Kepulauan Miyako seluruhnya terdapat 12 pulau, delapan pulau di antaranya berpenghuni, sedangkan selebihnya pulau tak berpenghuni atau gugus karang. Kedua belas pulau d...

Number of children a woman is expected to have barring select circumstances Not to be confused with birth rate. Map of countries by fertility rate, according to the Population Reference Bureau The Total Fertility Rate (TFR) of a population is the average number of children that are born to a woman over her lifetime if: they were to experience the exact current age-specific fertility rates (ASFRs) through their lifetime and they were to live from birth until the end of their reproductive life....

 

Untuk jabatan, lihat Landgraf. Landgraaf adalah sebuah gemeente Belanda yang terletak di provinsi Limburg. Pada tahun 2021 daerah ini memiliki penduduk sebesar 37.300 jiwa. Lihat pula Daftar Kota Belanda lbsMunisipalitas di provinsi Limburg Beek Beekdaelen Beesel Bergen Brunssum Echt-Susteren Eijsden-Margraten Gennep Gulpen-Wittem Heerlen Horst aan de Maas Kerkrade Landgraaf Leudal Maasgouw Maastricht Meerssen Mook en Middelaar Nederweert Peel en Maas Roerdalen Roermond Simpelveld Sittard-Gel...

 

Protein-coding gene in the species Homo sapiens For the video game, see Euro Truck Simulator 2. ETS2Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes4BQA, 4MHVIdentifiersAliasesETS2, ETS2IT1, ETS proto-oncogene 2, transcription factorExternal IDsOMIM: 164740 MGI: 95456 HomoloGene: 3838 GeneCards: ETS2 Gene location (Human)Chr.Chromosome 21 (human)[1]Band21q22.2Start38,805,183 bp[1]End38,824,955 bp[1]Gene location (Mouse)Chr.Chromosome 16 (mouse) ...

2017 film by Brian Shoaf AardvarkFilm posterDirected byBrian ShoafWritten byBrian ShoafProduced byNeal Dodson Susan Leber Zachary QuintoStarringZachary Quinto Jenny Slate Sheila Vand Jon HammCinematographyEric LinProductioncompaniesBefore The Door Pictures Great Point Media Suzie Q ProductionsDistributed byGreat Point MediaRelease dates April 21, 2017 (2017-04-21) (Tribeca) April 13, 2018 (2018-04-13) (United States) Running time89 minutesCountryUnited St...

 

lbsLogo saluran TV Saluran televisi AS dan Kanada ABC · CBS · NBC · PBS · FOX · MyNetworkTV · CNBC · USA Network · Ion · Nickelodeon · E! · CBC · Cartoon Network Saluran televisi Internasional Discovery · Disney · Australia · BBC Knowledge · MSNBC · TV9 · ntv7 Saluran televisi Indonesia antv ...

 

Pour les articles homonymes, voir Ali Baba. Les Mille et Une Vies d'Ali Baba Sources Ali Baba et les Quarante Voleurs Lyrics Thibaut ChatelFrédéric Doll Musique Fabrice AboulkerAlain Lanty Mise en scène Joël Lauwers Chorégraphie Bruno Agati Décors Louis Désiré Costumes Louis Désiré Lumières Jacques Rouveyrollis Production Pierre-Alain SimonJean-Claude et Annette Camus Première 15 septembre 2000Zénith de Toulon Dernière Zénith de Paris Langue d’origine Français Pays d’origi...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2022) عطلة عائلة جونسون (بالإنجليزية: Johnson Family Vacation)‏  الصنف فيلم كوميدي  تاريخ الصدور 12 أغسطس 2004 (ألمانيا)[1]2004  مدة العرض 97 دقيقة  البلد الولايات المت...

 

SMK Negeri 4 TasikmalayaSekolah Menengah Kejuruan Negeri 4 TasikmalayaInformasiDidirikan2020JenisNegeriAkreditasiANomor Statistik Sekolah401327810004Nomor Pokok Sekolah Nasional20276063Kepala SekolahDrs. H. DesnueriKetua KomiteAbun Sulaeman, S.Ag.KurikulumKurikulum 2013AlamatLokasiJl. Depok RT 02 RW 05, Sukamenak, Purbaratu, Tasikmalaya, Jawa Barat, IndonesiaTel./Faks.+62265312059Koordinat7°19′49″S 108°15′15″E / 7.3302379°S 108.2541336°E / -7.3302...

 

German documentary TV series brand A video by Terra X about climate factors (English subtitle) Terra X is a brand used by the German public broadcaster ZDF since 2008. Between 1982 and 2008, the brand name was ZDF Expedition. Some topics under the brand Terra X are documentaries about history, nature, archaeology and science. The documentaries are broadcast on ZDF. Repeats are also broadcast on ZDFinfo, ZDFneo, Phoenix, Arte and 3sat. Background On 17 January 1982, the first ZDF Expedition do...

Tower in Niagara Falls, Canada This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Tower Hotel Niagara Falls – news · newspapers · books · scholar · JSTOR (May 2007) Tower HotelThe tower before the 2010 renovationsGeneral informationAddress6732 Fallsview BlvdTown or cityNiagara Falls, OntarioCount...

 

1988 novel by Robert Cormier Fade First editionAuthorRobert CormierCountryUnited StatesLanguageEnglishGenreYoung adult fictionPublisherDelacorte PressPublication date1988Media typePrintPages320ISBN0-385-73134-5OCLC57385491LC ClassMLCS 2006/43456 Fade is a 1988 young adult novel written by Robert Cormier. Plot In the summer of 1938, the young Paul Moreaux, who lives in a town outside of Boston called Monument, discovers he can fade, becoming invisible. His family has had this ability...

 

River in the United StatesTowaliga RiverTowaliga River at High Falls State ParkLocationCountryUnited StatesPhysical characteristicsSource  • locationGeorgia[1] The Towaliga River is a 52.3-mile-long (84.2 km)[2] tributary of the Ocmulgee River in central Georgia. The Towaliga begins in Henry County and passes through High Falls State Park in northwestern Monroe County, then traverses the county and joins the Ocmulgee near the town of Juliette. Th...

Place in GreeceRafina ΡαφήναAerial view of Rafina's harbourRafinaLocation within the regional unit Coordinates: 38°1′N 24°0′E / 38.017°N 24.000°E / 38.017; 24.000CountryGreeceAdministrative regionAtticaRegional unitEast AtticaMunicipalityRafina-Pikermi • Municipal unit18.979 km2 (7.328 sq mi)Elevation29 m (95 ft)Population (2011)[1] • Municipal unit13,091 • Municipal unit density690...

 

American singer and songwriter (1931–1988) Brook BentonPromotional photo of Benton (1959)Background informationBirth nameBenjamin Franklin PeayBorn(1931-09-19)September 19, 1931Lugoff, South Carolina, U.S.DiedApril 9, 1988(1988-04-09) (aged 56)Queens, New York, U.S.GenresPoprhythm and bluessoulOccupationsSinger, songwriter, actorInstrumentsVocalsYears active1948–1988LabelsOkeh, Mercury, Cotillion, RCAMusical artist Benjamin Franklin Peay (September 19, 1931 – April 9, 1988), better...

 

Serving in multiple public positions simultaneously For other uses, see Dual mandate (disambiguation). Double dipping redirects here. For other uses, see Double dip. A dual mandate is the practice in which elected officials serve in more than one elected or other public position simultaneously. This practice is sometimes known as double jobbing in Britain and cumul des mandats in France; not to be confused with double dipping in the United States (e.g. being employed by and receiving a retire...

This article is about the social history of Tunisia under the French. For the French administration, see French protectorate of Tunisia. Part of a series on the History of Tunisia PrehistoricPrehistory Ancient Carthage12th C.–146 BC 1st Roman (Province)146 BC–435 Vandal435–534 2nd Roman (Byzantine) / Byzantine North Africa534–698 Prefecture534–590 Exarchate590–698 Early Islamic Umayyad698–750 Abbasid750–800 Aghlabid800–909 Fatimid909̵...

 

Putois marbré, Putois de Pologne Cet article est une ébauche concernant les carnivores. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Vormela peregusna Putois marbré adulte.Classification Règne Animalia Embranchement Chordata Sous-embr. Vertebrata Classe Mammalia Ordre Carnivora Sous-ordre Caniformia Famille Mustelidae Sous-famille Ictonychinae GenreVormelaBlasius, 1884 EspèceVormela peregusna(Güldenstäd...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!