Functional principal component analysis

Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L2 that consists of the eigenfunctions of the autocovariance operator. FPCA represents functional data in the most parsimonious way, in the sense that when using a fixed number of basis functions, the eigenfunction basis explains more variation than any other basis expansion. FPCA can be applied for representing random functions,[1] or in functional regression[2] and classification.

Formulation

For a square-integrable stochastic process X(t), t ∈ 𝒯, let

and

where are the eigenvalues and , , ... are the orthonormal eigenfunctions of the linear Hilbert–Schmidt operator

By the Karhunen–Loève theorem, one can express the centered process in the eigenbasis,

where

is the principal component associated with the k-th eigenfunction , with the properties

The centered process is then equivalent to ξ1, ξ2, .... A common assumption is that X can be represented by only the first few eigenfunctions (after subtracting the mean function), i.e.

where

Interpretation of eigenfunctions

The first eigenfunction depicts the dominant mode of variation of X.

where

The k-th eigenfunction is the dominant mode of variation orthogonal to , , ... , ,

where

Estimation

Let Yij = Xi(tij) + εij be the observations made at locations (usually time points) tij, where Xi is the i-th realization of the smooth stochastic process that generates the data, and εij are identically and independently distributed normal random variable with mean 0 and variance σ2, j = 1, 2, ..., mi. To obtain an estimate of the mean function μ(tij), if a dense sample on a regular grid is available, one may take the average at each location tij:

If the observations are sparse, one needs to smooth the data pooled from all observations to obtain the mean estimate,[3] using smoothing methods like local linear smoothing or spline smoothing.

Then the estimate of the covariance function is obtained by averaging (in the dense case) or smoothing (in the sparse case) the raw covariances

Note that the diagonal elements of Gi should be removed because they contain measurement error.[4]

In practice, is discretized to an equal-spaced dense grid, and the estimation of eigenvalues λk and eigenvectors vk is carried out by numerical linear algebra.[5] The eigenfunction estimates can then be obtained by interpolating the eigenvectors

The fitted covariance should be positive definite and symmetric and is then obtained as

Let be a smoothed version of the diagonal elements Gi(tij, tij) of the raw covariance matrices. Then is an estimate of (G(t, t) + σ2). An estimate of σ2 is obtained by

if otherwise

If the observations Xij, j=1, 2, ..., mi are dense in 𝒯, then the k-th FPC ξk can be estimated by numerical integration, implementing

However, if the observations are sparse, this method will not work. Instead, one can use best linear unbiased predictors,[3] yielding

where

,

and is evaluated at the grid points generated by tij, j = 1, 2, ..., mi. The algorithm, PACE, has an available Matlab package[6] and R package[7]

Asymptotic convergence properties of these estimates have been investigated.[3][8][9]

Applications

FPCA can be applied for displaying the modes of functional variation,[1][10] in scatterplots of FPCs against each other or of responses against FPCs, for modeling sparse longitudinal data,[3] or for functional regression and classification (e.g., functional linear regression).[2] Scree plots and other methods can be used to determine the number of components included. Functional Principal component analysis has varied applications in time series analysis. At present, this method is being adapted from traditional multivariate techniques to analyze financial data sets such as stock market indices and generate implied volatility graphs.[11] A good example of advantages of the functional approach is the Smoothed FPCA (SPCA), developed by Silverman [1996] and studied by Pezzulli and Silverman [1993], that enables direct combination of FPCA along with a general smoothing approach that makes using the information stored in some linear differential operators possible. An important application of the FPCA already known from multivariate PCA is motivated by the Karhunen-Loève decomposition of a random function to the set of functional parameters – factor functions and corresponding factor loadings (scalar random variables). This application is much more important than in the standard multivariate PCA since the distribution of the random function is in general too complex to be directly analyzed and the Karhunen-Loève decomposition reduces the analysis to the interpretation of the factor functions and the distribution of scalar random variables. Due to dimensionality reduction as well as its accuracy to represent data, there is a wide scope for further developments of functional principal component techniques in the financial field.

Applications of PCA in automotive engineering.[12][13][14][15]

Connection with principal component analysis

The following table shows a comparison of various elements of principal component analysis (PCA) and FPCA. The two methods are both used for dimensionality reduction. In implementations, FPCA uses a PCA step.

However, PCA and FPCA differ in some critical aspects. First, the order of multivariate data in PCA can be permuted, which has no effect on the analysis, but the order of functional data carries time or space information and cannot be reordered. Second, the spacing of observations in FPCA matters, while there is no spacing issue in PCA. Third, regular PCA does not work for high-dimensional data without regularization, while FPCA has a built-in regularization due to the smoothness of the functional data and the truncation to a finite number of included components.

Element In PCA In FPCA
Data
Dimension
Mean
Covariance
Eigenvalues
Eigenvectors/Eigenfunctions
Inner Product
Principal Components

See also

Notes

  1. ^ a b Jones, M. C.; Rice, J. A. (1992). "Displaying the Important Features of Large Collections of Similar Curves". The American Statistician. 46 (2): 140. doi:10.1080/00031305.1992.10475870.
  2. ^ a b Yao, F.; Müller, H. G.; Wang, J. L. (2005). "Functional linear regression analysis for longitudinal data". The Annals of Statistics. 33 (6): 2873. arXiv:math/0603132. doi:10.1214/009053605000000660.
  3. ^ a b c d Yao, F.; Müller, H. G.; Wang, J. L. (2005). "Functional Data Analysis for Sparse Longitudinal Data". Journal of the American Statistical Association. 100 (470): 577. doi:10.1198/016214504000001745.
  4. ^ Staniswalis, J. G.; Lee, J. J. (1998). "Nonparametric Regression Analysis of Longitudinal Data". Journal of the American Statistical Association. 93 (444): 1403. doi:10.1080/01621459.1998.10473801.
  5. ^ Rice, John; Silverman, B. (1991). "Estimating the Mean and Covariance Structure Nonparametrically When the Data are Curves". Journal of the Royal Statistical Society. Series B (Methodological). 53 (1): 233–243. doi:10.1111/j.2517-6161.1991.tb01821.x.
  6. ^ "PACE: Principal Analysis by Conditional Expectation".
  7. ^ "fdapace: Functional Data Analysis and Empirical Dynamics". 2018-02-25.
  8. ^ Hall, P.; Müller, H. G.; Wang, J. L. (2006). "Properties of principal component methods for functional and longitudinal data analysis". The Annals of Statistics. 34 (3): 1493. arXiv:math/0608022. doi:10.1214/009053606000000272.
  9. ^ Li, Y.; Hsing, T. (2010). "Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data". The Annals of Statistics. 38 (6): 3321. arXiv:1211.2137. doi:10.1214/10-AOS813.
  10. ^ Madrigal, Pedro; Krajewski, Paweł (2015). "Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform". BioData Mining. 8: 20. doi:10.1186/s13040-015-0051-7. PMC 4488123. PMID 26140054.
  11. ^ Functional Data Analysis with Applications in Finance by Michal Benko
  12. ^ Lee, Sangdon (2012). "Variation modes of vehicle acceleration and development of ideal vehicle acceleration". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 226 (9): 1185–1201. doi:10.1177/0954407012442775.
  13. ^ Lee, Sangdon (2010). "Characterization and Development of the Ideal Pedal Force, Pedal Travel, and Response Time in the Brake System for the Translation of the Voice of the Customer to Engineering Specifications". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 224 (11): 1433–1450. doi:10.1243/09544070JAUTO1585.
  14. ^ Lee, Sangdon (2008). "Principal component analysis of vehicle acceleration gain and translation of voice of the customer". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 222 (2): 191–203. doi:10.1243/09544070JAUTO351.
  15. ^ Lee, Sangdon (2006). "Multivariate statistical analyses of idle noise and vehicle positioning". International Journal of Vehicle Noise and Vibration. 2 (2): 156–175. doi:10.1504/IJVNV.2006.011052.

References

Read other articles:

Société d'études scientifiques de l'AudeHistoireFondation 1889CadreSigle SESAType Société savanteForme juridique Association déclaréeDomaine d'activité histoire, archéologie, histoire de l'art, paléontologie, géologie, botaniqueObjectif étudier et faire connaître le département de l'AudeSiège 91 rue Aimé Ramond, bureau n°12 Carcassonne (Aude)Pays  FranceLangue FrançaisOrganisationPrésidente Françoise Viala (d) (depuis 2023)Affiliation Comité des travaux historiques e...

 

Hong Kong film director In this Hong Kong name, the surname is To. In accordance with Hong Kong custom, the Western-style name is Johnnie To and the Chinese-style name is To Kei-fung. Johnnie To杜琪峯To in an interview for Septet: The Story of Hong Kong in 2022Born (1955-04-22) 22 April 1955 (age 68)British Hong KongOccupationsFilm directorscreenwriterfilm producerAwardsHong Kong Film Awards – Best Director2000 The Mission2004 PTU2006 Election Best Film2004 Running on Karma2006 Elec...

 

Un ataque de diccionario es un método de cracking que consiste en intentar averiguar una contraseña probando todas las palabras del diccionario. Este tipo de ataque suele ser más eficiente que un ataque de fuerza bruta, ya que muchos usuarios suelen utilizar una palabra existente en su lengua como contraseña para que la clave sea fácil de recordar, lo cual no es una práctica recomendable. Los ataques de diccionario tienen pocas probabilidades de éxito con sistemas que emplean contrase...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) باتسي أوهارا معلومات شخصية الميلاد 11 يوليو 1957[1]  ديري  الوفاة 21 مايو 1981 (23 سنة) [1]  سبب الوفاة الموت جوعا  مواطنة أيرلندا  الحياة العملية ال

 

Siberia beralih ke halaman ini. Untuk kegunaan lain, lihat Siberia (disambiguasi).Siberia Rusia: Сибирь (Sibir')Geografi wilayah       Distrik Federal Siberia        Geografi Siberia Rusia        Wilayah Asia Utara, NegaraRusiaWilayahAsia Utara, EurasiaPartaiDataran Siberia BaratDataran Tinggi Siberia Tengahlainnya... 'Luas • Total13.100.000 km2 (5,100,000 sq...

 

Japanese light novel series and its adaptations I've Somehow Gotten Stronger When I Improved My Farm-Related SkillsFirst light novel volume cover農民関連のスキルばっか上げてたら何故か強くなった。(Nōmin Kanren no Sukiru Bakka Agetetara Nazeka Tsuyoku Natta) Novel seriesWritten byShobonnuPublished byShōsetsuka ni NarōOriginal runAugust 2, 2016 – May 16, 2018 Light novelWritten byShobonnuIllustrated bySogawaPublished byFutabashaImprintMo...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Erin BradyLahir5 November 1987 (umur 36)East Hampton, Connecticut, USATinggi5 ft 8 in (1,73 m)Pemenang kontes kecantikanGelarMiss Connecticut USA 2013Miss USA 2013Warna rambutCokelatWarna mataHijauKompetisiutamaMiss Connecticut USA 2013(Pemenang)Miss USA 2013(Pemenang)Miss Universe 2013(Top 10) Erin Brady (lahir 5 November 1987) adalah seorang pemenang kontes kecantikan Amerika yang memenangkan Miss USA 2013.[1] Dia kemudian mewakili USA pada Miss Universe 2013 di ...

 

Gino QuilicoBiographieNaissance 29 avril 1955 (68 ans)New YorkNationalités canadienneaméricaineFormation Université de TorontoActivité Artiste lyriquePère Louis QuilicoAutres informationsTessiture BarytonDistinction Officier de l'Ordre du Canadamodifier - modifier le code - modifier WikidataSi ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. La mise en forme de cet article est à améliorer (septembre 2023). La mise en forme du texte ne suit pas les reco...

تشو-هامعلومات عامةالمكان كينتانا رو، المكسيكالبلد  المكسيك الإحداثيات 20°26′8″N 87°46′6″W / 20.43556°N 87.76833°W / 20.43556; -87.76833الجيولوجيا حجر جيريالمداخل سينوتي 1تعديل - تعديل مصدري - تعديل ويكي بياناتتشو-ها, ها تامكاتش-ها و مولتوم-ها هي سلسلة من الفجوات الصخرية الصغيرة ...

 

El texto que sigue es una traducción defectuosa. Si quieres colaborar con Wikipedia, busca el artículo original y mejora esta traducción.Copia y pega el siguiente código en la página de discusión del autor de este artículo: {{subst:Aviso mal traducido|Ocupación japonesa de Hong Kong}} ~~~~ Territorio ocupado de Hong KongOcupación japonesa de Hong Kong香港占領地[1]​ Colonia-dependencia 1941-1945 Bandera La zona de Hong Kong (en rojo) dentro del Imperio japonés (en rosa)Coo...

 

Part of a series onAnthropology OutlineHistory Types Archaeological Biological Cultural Linguistic Social Archaeological Aerial Aviation Battlefield Biblical Bioarchaeological Environmental Ethnoarchaeological Experiential Feminist Forensic Maritime Paleoethnobotanical Zooarchaeological Biological Anthrozoological Biocultural Evolutionary Forensic Molecular Neurological Nutritional Paleoanthropological Primatological SocialCultural Applied Art Cognitive Cyborg Development Digital Ecological E...

Iwan Bloch. Iwan Bloch (8 April 1872 – 21 November 1922), juga dikenal sebagai Ivan Bloch, adalah seorang pakar dermatologi dan psikiatri asal Jerman. Lahir di Delmenhorst, Keharyapatihan Oldenburg, Jerman, ia sering disebut sebagai seksologis pertama. Ia menemukan manuskrip Marquis de Sade The 120 Days of Sodom, yang diyakini telah hilang, dan menerbitkannya dengan pseudonim Eugène Dühren pada 1904. Pada 1899, ia menerbitkan Marquis de Sade: his life and works. dengan pseud...

 

Shopee Liga 1Musim2019Tanggal15 Mei – 22 Desember 2019JuaraBali UnitedPertandingan perdanaPSS vs. Arema(15 Mei 2019)Degradasi Kalteng Putra Semen Padang Badak Lampung Liga Champions AFCBali UnitedPiala AFC 2020PSM MakassarKejuaraan Klub ASEAN 2020 Bali United Persebaya Jumlah pertandingan306Jumlah gol838 (2,74 per pertandingan)Pelatih terbaikTecoBali UnitedPemain terbaik Renan SilvaBorneoPencetak golterbanyak28 gol Marko ŠimićPersijaPemain muda terbaik Todd FerrePersipuraKemenangan k...

 

Australian rules footballer, born 1917 Australian rules footballer Ken Baxter Baxter marking the ball during a match in 1941Personal informationFull name Kenneth Matthew Patrick BaxterDate of birth 20 August 1917Place of birth Werribee, VictoriaDate of death 27 April 1959(1959-04-27) (aged 41)Place of death Parkville, VictoriaOriginal team(s) WerribeeDebut Round 3, 1938, Carlton vs. Essendon, at Windy HillHeight 183 cm (6 ft 0 in)Weight 81 kg (179 lb)Pl...

Municipality in Vestland, Norway This article is about the municipality. For the island, see Askøy (island). Municipality in Vestland, NorwayAskøy Municipality Askøy kommuneMunicipalityAskøen herred  (historic name)Askøy in mid-June 2008 Coat of armsVestland within NorwayAskøy within VestlandCoordinates: 60°28′17″N 05°09′38″E / 60.47139°N 5.16056°E / 60.47139; 5.16056CountryNorwayCountyVestlandDistrictMidhordlandEstablished1 Jan 1838 ...

 

  لمعانٍ أخرى، طالع المجعارة (توضيح). المجعارة (محلة) تقسيم إداري البلد  اليمن المحافظة محافظة إب المديرية مديرية ذي السفال العزلة عزلة شوائط القرية قرية عرج السكان التعداد السكاني 2004 السكان 35   • الذكور 22   • الإناث 13   • عدد الأسر 5   • عدد المساكن 4 معلومات...

 

1881 battle during the Apache Wars This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2012) (Learn how and when to remove this template message) Battle of Cibecue CreekPart of Geronimo's War, Apache WarsAn Apache warrior by William F. FarnyDateAugust 30, 1881LocationCibecue Creek, Fort Apache Indian Reservation, Arizona TerritoryResult Apache strategic ...

World War II merchant ship of the United Kingdom History Name Tolosa (1920-40) Empire Dorado (1940-41) Owner United States Shipping Board (1920-37) United States Maritime Commission (1937-40) Ministry of War Transport (1940-41) Operator United States Shipping Board (1920-37) United States Maritime Commission (1937-40) Runciman (London) Ltd (1940-41) Port of registry Portsmouth, United States (1920-1940) London, United Kingdom (1940-41) BuilderAtlantic Corporation Yard number8 Launched1920 Com...

 

2010 film by Kim Soo-hyun AshamedHangul창피해Hanja猖披해Revised RomanizationChangpihaeMcCune–ReischauerCh‘angp‘ihae Directed byKim Soo-hyeonWritten byKim Soo-hyeonProduced byLee Gyeong-huiStarringKim Hyo-jin Kim Kkot-biCinematographyKim Jin-wooEdited byLee Yeon-jin Seo Seung-hyeonMusic byLee Eun-jeongDistributed byMountain PicturesRelease dates October 2010 (2010-10) (Busan International Film Festival) December 8, 2011 (2011-12-08) (South Korea) Ru...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!