Functional differential equation

A functional differential equation is a differential equation with deviating argument. That is, a functional differential equation is an equation that contains a function and some of its derivatives evaluated at different argument values.[1]

Functional differential equations find use in mathematical models that assume a specified behavior or phenomenon depends on the present as well as the past state of a system.[2] In other words, past events explicitly influence future results. For this reason, functional differential equations are more applicable than ordinary differential equations (ODE), in which future behavior only implicitly depends on the past.

Definition

Unlike ordinary differential equations, which contain a function of one variable and its derivatives evaluated with the same input, functional differential equations contain a function and its derivatives evaluated with different input values.

  • An example of an ordinary differential equation would be
  • In comparison, a functional differential equation would be

The simplest type of functional differential equation called the retarded functional differential equation or retarded differential difference equation, is of the form[3]

Examples

The simplest, fundamental functional differential equation is the linear first-order delay differential equation[4][unreliable source?] which is given by

where are constants, is some continuous function, and is a scalar. Below is a table with a comparison of several ordinary and functional differential equations.

Ordinary differential equation Functional differential equation
Examples

Types of functional differential equations

"Functional differential equation" is the general name for a number of more specific types of differential equations that are used in numerous applications. There are delay differential equations, integro-differential equations, and so on.

Differential difference equation

Differential difference equations are functional differential equations in which the argument values are discrete.[1] The general form for functional differential equations of finitely many discrete deviating arguments is

where and

Differential difference equations are also referred to as retarded, neutral, advanced, and mixed functional differential equations. This classification depends on whether the rate of change of the current state of the system depends on past values, future values, or both.[5]

Classifications of differential difference equations[6]
Retarded
Neutral
Advanced

Delay differential equation

Functional differential equations of retarded type occur when for the equation given above. In other words, this class of functional differential equations depends on the past and present values of the function with delays.

A simple example of a retarded functional differential equation is

whereas a more general form for discrete deviating arguments can be written as

Neutral differential equations

Functional differential equations of neutral type, or neutral differential equations occur when

Neutral differential equations depend on past and present values of the function, similarly to retarded differential equations, except it also depends on derivatives with delays. In other words, retarded differential equations do not involve the given function's derivative with delays while neutral differential equations do.

Integro-differential equation

Integro-differential equations of Volterra type are functional differential equations with continuous argument values.[1] Integro-differential equations involve both the integrals and derivatives of some function with respect to its argument.

The continuous integro-differential equation for retarded functional differential equations, , can be written as

Application

Functional differential equations have been used in models that determine future behavior of a certain phenomenon determined by the present and the past. Future behavior of phenomena, described by the solutions of ODEs, assumes that behavior is independent of the past.[2] However, there can be many situations that depend on past behavior.

FDEs are applicable for models in multiple fields, such as medicine, mechanics, biology, and economics. FDEs have been used in research for heat-transfer, signal processing, evolution of a species, traffic flow and study of epidemics.[1][4]

Population growth with time lag

A logistic equation for population growth is given by where ρ is the reproduction rate and k is the carrying capacity. represents the population size at time t, and is the density-dependent reproduction rate.[7]

If we were to now apply this to an earlier time , we get

Mixing model

Upon exposure to applications of ordinary differential equations, many come across the mixing model of some chemical solution.

Suppose there is a container holding liters of salt water. Salt water is flowing in, and out of the container at the same rate of liters per second. In other words, the rate of water flowing in is equal to the rate of the salt water solution flowing out. Let be the amount in liters of salt water in the container and be the uniform concentration in grams per liter of salt water at time . Then, we have the differential equation[8]

The problem with this equation is that it makes the assumption that every drop of water that enters the contain is instantaneously mixed into the solution. This can be eliminated by using a FDE instead of an ODE.

Let be the average concentration at time , rather than uniform. Then, let's assume the solution leaving the container at time is equal to , the average concentration at some earlier time. Then, the equation is a delay-differential equation of the form[8]

Volterra's predator-prey model

The Lotka–Volterra predator-prey model was originally developed to observe the population of sharks and fish in the Adriatic Sea; however, this model has been used in many other fields for different uses, such as describing chemical reactions. Modelling predatory-prey population has always been widely researched, and as a result, there have been many different forms of the original equation.

One example, as shown by Xu, Wu (2013),[9] of the Lotka–Volterra model with time-delay is given below: where denotes the prey population density at time t, and denote the density of the predator population at time and

Other models using FDEs

Examples of other models that have used FDEs, namely RFDEs, are given below:

  • Controlled motion of a rigid body[1]
  • Periodic motions[8]
  • Flip-flop circuit as a NDE[8]
  • Model of HIV epidemic
  • Math models of sugar quantity in blood[1]
  • Evolution equations of single species[1]
  • Spread of an infection between two species[8]
  • Classical electrodynamics[10]

See also

References

  1. ^ a b c d e f g Kolmanovskii, V.; Myshkis, A. (1992). Applied Theory of Functional Differential Equations. The Netherlands: Kluwer Academic Publishers. ISBN 0-7923-2013-1.
  2. ^ a b Hale, Jack K. (1971). Functional Differential Equations. United States: Springer-Verlag. ISBN 0-387-90023-3.
  3. ^ Hale, Jack K.; Verduyn Lunel, Sjoerd M. (1993). Introduction to Functional Differential Equations. United States: Springer-Verlag. ISBN 0-387-94076-6.
  4. ^ a b Falbo, Clement E. "Some Elementary Methods for Solving Functional Differential Equations" (PDF). Archived from the original (PDF) on 2016-12-20.
  5. ^ Guo, S.; Wu, J. (2013). Bifurcation Theory of Functional Differential Equations. New York: Springer. pp. 41–60. ISBN 978-1-4614-6991-9.
  6. ^ Bellman, Richard; Cooke, Kenneth L. (1963). Differential-Difference Equations. New York, NY: Academic Press. pp. 42–49. ISBN 978-0124109735.
  7. ^ Barnes, B.; Fulford, G. R. (2015). Mathematical Modelling with Case Studies. Taylor & Francis Group LLC. pp. 75–77. ISBN 978-1-4822-4772-5.
  8. ^ a b c d e Schmitt, Klaus, ed. (1972). Delay and Functional Differential Equations and Their Applications. United States: Academic Press.
  9. ^ Xu, Changjin; Wu, Yusen (2013). "Dynamics in a Lotka–Volterra Predator–Prey Model with Time-varying Delays". Abstract and Applied Analysis. 2013: 1–9. doi:10.1155/2013/956703.
  10. ^ García López, Álvaro (1 September 2020). "On an electrodynamic origin of quantum fluctuations". Nonlinear Dynamics. 102 (1): 621–634. arXiv:2001.07392. doi:10.1007/s11071-020-05928-5. S2CID 210838940.

Further reading

  • Herdman, Terry L.; Rankin III, Samuel M.; Stech, Harlan W. (1981). Integral and Functional Differential Equations: Lecture notes. 67. United States: Marcel Dekker Inc, Pure and Applied Mathematics
  • Ford, Neville J.; Lumb, Patricia M. (2009). "Mixed-type functional differential equations: A numerical approach". Journal of Computational and Applied Mathematics. 229 (2): 471–479
  • Lemon, Greg; Kinf, John R. (2012). :A functional differential equation model for biological cell sorting due to differential adhesion". Mathematical Models and Methods in Applied Sciences. 12(1): 93–126
  • Da Silva, Carmen, Escalante, René (2011). "Segmented Tau approximation for forward-backward functional differential equation". Computers and Mathematics with Applications. 62 (12): 4582–4591
  • Pravica, D. W.; Randriampiry, N.; Spurr, M. J. (2009). "Applications of an advanced differential equation in the study of wavelets". Applied and Computational Harmonic Analysis. 27 (1): 2(10)
  • Breda, Dimitri; Maset, Stefano; Vermiglio Rossana (2015). Stability of Linear Delay Differential Equations: A Numerical Approach with MATLAB. Springer. ISBN 978-1-4939-2106-5

Read other articles:

ManiacGenreKomedi gelapPembuatPatrick SomervilleBerdasarkanManiacoleh Espen PA LervaagHåakon Bast MossigeKjetil IndregardOle Marius AraldsenPengembang Cary Joji Fukunaga Patrick Sommerville SutradaraCary Joji FukunagaPemeran Emma Stone Jonah Hill Justin Theroux Sonoya Mizuno Gabriel Byrne Sally Field Penata musikDan RomerNegara asalAmerika SerikatBahasa asliInggrisJmlh. episode10 (daftar episode)ProduksiProduser eksekutif Patrick Somerville Cary Joji Fukunaga Michael Sugar Doug Wald Jo...

 

This article uses citations that link to broken or outdated sources. Please improve the article by addressing link rot or discuss this issue on the talk page. (April 2021) (Learn how and when to remove this template message) A boat belonging to the Philippine National Police at the Iloilo River in Iloilo City Crime is present in various forms in the Philippines, and remains a serious issue throughout the country. Illegal drug trade, human trafficking, arms trafficking, murder, corruption and ...

 

American pool player (born 1951) Allen HopkinsBorn (1951-11-18) 18 November 1951 (age 71)Elizabeth, New JerseySport country United StatesNicknameYoung HoppeProfessional1971Best finishQuarter finals 1990 WPA World Nine-ball ChampionshipTournament winsOther titles50World ChampionStraight Pool (1977) Allen Hopkins (born November 18, 1951) is an American professional pocket billiards (pool) player, professional billiards color commentator and BCA Hall of Fame inductee. He promotes multi...

Hedvig Elisabet av Kurland. Hedvig Elisabeth von Biron av Kurland, född 23 juni 1727 i Mitau, död där 1797, var en rysk hovdam. Hon var hovmästarinna åt Elisabet av Ryssland och intog en framträdande plats vid det ryska hovet. Hon var dotter till hertig Ernst Johann von Biron av Kurland och Benigna Gottlieb von Trotha gt Treyden. Hon beskrivs som ful, med en missformad kropp med puckelrygg, men fick en fin utbildning under överinseende av kejsarinnan Anna Ivanovna. När hennes far utn...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) في ما يلي تفاصيل مشاركة وأداء أندية دوري المحترفين السعودي في دوري أبطال آسيا منذ تغيير اسمها وتنظيمها في

 

Народна самооборона — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пош...

  لمعانٍ أخرى، طالع عدو (توضيح). عدوEnemyشعار الفيلممعلومات عامةالصنف الفني إثارة وغموضتاريخ الصدور 14 مارس 2014 (كندا) 28 مارس 2014 (إسبانيا)مدة العرض 90 دقيقةاللغة الأصلية الإنجليزية مأخوذ عن الشبيه لجوزيه ساراماغوالبلد  كندا إسبانياموقع التصوير تورونتو صيغة الفيلم فيل...

 

الطريق السريع 1 (إسرائيل)     الطريق السريع 1 (إسرائيل) البلد إسرائيل المميزات الطول 94 كم النهاية الغرب تل أبيب التقاطعات Kibbutz Galuyot Interchange غانوت Interchange Shapirim Interchange تقاطع اللد Ben Shemen Interchange Daniel Interchange Latrun Interchange باب الواد Interchange تقاطع يغائيل يادين Sha'ar Mizrah Interchange النهاية الشرق غو

 

Lê DũngChức vụVụ trưởng Vụ Thông tin Báo chíNgười Phát ngôn của Bộ Ngoại giaoNhiệm kỳ21 tháng 8 năm 2003 – 20 tháng 8 năm 20095 năm, 364 ngàyTiền nhiệmPhan Thúy ThanhKế nhiệmNguyễn Phương Nga Thông tin chungSinh1961Hà Nội Lê Dũng, sinh năm 1961 tại Hà Nội, là Người Phát ngôn Bộ Ngoại giao Cộng hòa Xã hội Chủ nghĩa Việt Nam từ 2003-2009. Nguyên Đại sứ đặc mệnh toàn quyền...

Alongside Pooles Wharf, Bristol, January 2014 History United Kingdom NameIrene OwnerSymons of Bridgwater; Bridgwater Brick and Tile Company; Leslie Morrish BuilderFJ Carver and Son, Bridgwater LaunchedMay 1907 Identification Callsign MCQW MMSI number: 235085663 StatusActive General characteristics Class and typeWest Country Ketch Tonnage98 NRT LengthLOA 118 ft (35.97 m)LWL 85 ft (25.91 m) Beam21 ft (6.40 m) Draft10 ft (3.05 m) Irene is a 100-foot W...

 

2006 animated television series Jyu-Oh-SeiCover art of the first Jyu-Oh-Sei tankōbon獣王星(Jū Ō Sei)GenreScience fiction, romance, Tragedy MangaWritten byNatsumi ItsukiPublished byHakusenshaEnglish publisherNA: TokyopopMagazineLaLa, MelodyDemographicShōjoOriginal runDecember 1993 – January 2003Volumes3 Anime television seriesDirected byHiroshi NishikioriProduced byMasahiko MinamiYukihiro ItōKōji YamamotoYōko MatsuzakiWritten byReiko YoshidaMusic byHaj...

 

As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete permaneça verificável. (Janeiro de 2016) Coordenadas: 21º 43' S 43º 54' W Parque Estadual do Ibitipoca Categoria II da IUCN (Parque Nacional) Parque Estadual do IbitipocaVista do Parque Estadual do Ibitipoca durante trilha até a Janela da Céu Localização  Minas Gerais,  Brasil. Dados Área 1 488 hectares Criação 4 de julho de 1973...

Light rail station in Escondido, California, United States This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nordahl Road station – news · newspapers · books · scholar · JSTOR (November 2023) Nordahl RoadNordahl Road station in 2022, looking westboundGeneral informationLocation2121 Barham DriveEscond...

 

2005 film directed by Neil Marshall For the book by Jeff Long, see The Descent (novel). For another similarly named film, see Descent (2007 film). For other uses, see Descent (disambiguation). The DescentTheatrical release posterDirected byNeil MarshallWritten byNeil MarshallProduced byChristian ColsonStarring Shauna Macdonald Natalie Mendoza Alex Reid Saskia Mulder Nora-Jane Noone MyAnna Buring CinematographySam McCurdyEdited byJon HarrisMusic byDavid JulyanProductioncompaniesCelador FilmsNo...

 

2023年欧洲超级杯比雷埃夫斯卡雷斯卡基斯体育场 曼城 塞维利亚 1 1 曼城在互射十二碼中以5–4取胜日期2023年8月16日 (2023-08-16)球場比雷埃夫斯,卡雷斯卡基斯体育场最佳球員科爾·帕爾默(曼城)[1]裁判弗朗索瓦·勒泰西耶(英语:François Letexier)(法国)[2]入場人數29,207[3]天氣晴28 °C(82 °F)湿度47%[4]← 2022 2024 → 2023年欧洲超级杯是第48届...

Біарріц Олімпік Пеї Баск фр. Biarritz Olympique Pays Basque Повна назва Biarritz olympique Pays basque Засновано 1913 Населений пункт Біарріц, Франція Стадіон Парк де Спорт Агілера Вміщує 15 000 Президент Ніколя Бруск Головний тренер Конор МакГрегор Бенуа Огуст Ліга Про Д2 2015—2016 7 Домашня Виїзна Біарріц...

 

Microorganism killed by normal atmospheric levels of oxygen Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with o...

 

Austro-Hungarian generalFreiherrArthur Arz von StraußenburgArthur Freiherr Arz von Straußenburg in 1917Chief of the General StaffIn office1 March 1917 – 3 November 1918MonarchCharles IPreceded byFranz Conrad von HötzendorfSucceeded byoffice abolished Personal detailsBorn(1857-06-16)16 June 1857Hermannstadt, Austrian Empire(present-day Sibiu, Romania)Died1 July 1935(1935-07-01) (aged 78)Budapest, Kingdom of HungaryAwardsMilitary Order of Maria TheresaPour le MériteMilitary ...

Odznaka Strzelca WyborowegoScharfschützenabzeichen Awers Odznaki Strzelca Wyborowego III stopnia Ustanowiono 20 sierpnia 1944 Wielkość 60 × 45 mm (szerokość kordonka 2,5 mm) Kruszec odznaka wykonywana na podkładce materiałowej haftem maszynowym, do którego używano lnianych nici Wydano ? Multimedia w Wikimedia Commons Niezatwierdzony projekt Scharfschützenabzeichen z roku 1943, autorstwa berlińskiego malarza Paula Casberga Odznaka Strzelca Wyborowego (niem. Scharfschützenabzeichen...

 

Опис файлу Опис Постер до фільму Джерело https://kino-teatr.ua/uk/film/us-50095.phtml Автор зображення Студія-виробник та/або дистриб'ютор Ліцензія див. нижче Обґрунтування добропорядного використання для статті «Ми (фільм, 2019)» [?] Мета використання в якості основного засобу візуаль...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!