Field arithmetic

In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a field and its absolute Galois group. It is an interdisciplinary subject as it uses tools from algebraic number theory, arithmetic geometry, algebraic geometry, model theory, the theory of finite groups and of profinite groups.

Fields with finite absolute Galois groups

Let K be a field and let G = Gal(K) be its absolute Galois group. If K is algebraically closed, then G = 1. If K = R is the real numbers, then

Here C is the field of complex numbers and Z is the ring of integer numbers. A theorem of Artin and Schreier asserts that (essentially) these are all the possibilities for finite absolute Galois groups.

Artin–Schreier theorem. Let K be a field whose absolute Galois group G is finite. Then either K is separably closed and G is trivial or K is real closed and G = Z/2Z.

Fields that are defined by their absolute Galois groups

Some profinite groups occur as the absolute Galois group of non-isomorphic fields. A first example for this is

This group is isomorphic to the absolute Galois group of an arbitrary finite field. Also the absolute Galois group of the field of formal Laurent series C((t)) over the complex numbers is isomorphic to that group.

To get another example, we bring below two non-isomorphic fields whose absolute Galois groups are free (that is free profinite group).

  • Let C be an algebraically closed field and x a variable. Then Gal(C(x)) is free of rank equal to the cardinality of C. (This result is due to Adrien Douady for 0 characteristic and has its origins in Riemann's existence theorem. For a field of arbitrary characteristic it is due to David Harbater and Florian Pop, and was also proved later by Dan Haran and Moshe Jarden.)
  • The absolute Galois group Gal(Q) (where Q are the rational numbers) is compact, and hence equipped with a normalized Haar measure. For a Galois automorphism s (that is an element in Gal(Q)) let Ns be the maximal Galois extension of Q that s fixes. Then with probability 1 the absolute Galois group Gal(Ns) is free of countable rank. (This result is due to Moshe Jarden.)

In contrast to the above examples, if the fields in question are finitely generated over Q, Florian Pop proves that an isomorphism of the absolute Galois groups yields an isomorphism of the fields:

Theorem. Let K, L be finitely generated fields over Q and let a: Gal(K) → Gal(L) be an isomorphism. Then there exists a unique isomorphism of the algebraic closures, b: Kalg → Lalg, that induces a.

This generalizes an earlier work of Jürgen Neukirch and Koji Uchida on number fields.

Pseudo algebraically closed fields

A pseudo algebraically closed field (in short PAC) K is a field satisfying the following geometric property. Each absolutely irreducible algebraic variety V defined over K has a K-rational point.

Over PAC fields there is a firm link between arithmetic properties of the field and group theoretic properties of its absolute Galois group. A nice theorem in this spirit connects Hilbertian fields with ω-free fields (K is ω-free if any embedding problem for K is properly solvable).

Theorem. Let K be a PAC field. Then K is Hilbertian if and only if K is ω-free.

Peter Roquette proved the right-to-left direction of this theorem and conjectured the opposite direction. Michael Fried and Helmut Völklein applied algebraic topology and complex analysis to establish Roquette's conjecture in characteristic zero. Later Pop proved the Theorem for arbitrary characteristic by developing "rigid patching".

References

  • Fried, Michael D.; Jarden, Moshe (2004). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (2nd revised and enlarged ed.). Springer-Verlag. ISBN 3-540-22811-X. Zbl 1055.12003.
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4, MR 1737196, Zbl 0948.11001

Read other articles:

Koordinat: 39°56′01″N 116°26′53″E / 39.933536°N 116.448053°E / 39.933536; 116.448053 Taikoo Li Sanlitun South Taikoo Li Sanlitun (Hanzi: 三里屯太古里; Pinyin: Sānlǐtún Tàigǔlǐ), sebelumnya bernama Sanlitun Village, adalah pusat perbelanjaan di Sanlitun, Distrik Chaoyang, Beijing, Tiongkok. Terdiri dari 19 bangunan di dua deretan terpisah (Selatan dan Utara) yang dapat ditempuh dengan berjalan kaki. Selain toko ritel, terdapat juga sebuah...

 

Species of snake This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Striped whipsnake – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this template message) Striped whipsnake Desert striped whipsnake, Masticophis taeniatus taeniatus Conservation status Least Concern...

 

Santuario de Nuestra Señora Madre de DiosSantuário de Nossa Senhora Madre de Deus Vista del lugarLocalizaciónPaís BrasilDivisión Porto AlegreDirección Porto Alegre BrasilCoordenadas 30°06′00″S 51°10′54″O / -30.0998805, -51.181733Información religiosaCulto Iglesia católicaDiócesis Arquidiócesis de Porto AlegreDatos arquitectónicosTipo Santuario[editar datos en Wikidata] El Santuario de Nuestra Señora Madre de Dios (en portugués: Santuário ...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Dezembro de 2017) O Último Combate França Direção Luc Besson Produção Luc BessonPierre Jolivet Roteiro Luc BessonPierre Jolivet Elenco Christiane KrügerFritz WepperMaurice LamyMichel D'OzJean BouiseJean RenoPetra SchersingPierre...

 

The Winstons The Winstons en 1969Datos generalesOrigen Washington D. C.,  Estados UnidosEstado DisueltoInformación artísticaGénero(s) Funk y SoulDiscográfica(s) MetromediaMiembros Richard Lewis Spencer Gregory C. Coleman Phil Tolotta Quincy Mattison Ray Maritano Sonny Peckrol [editar datos en Wikidata] The Winstons fue un grupo de música funk y soul de los años 1960 originario de Washington, D. C. Su mayor éxito musical fue la canción Color Him Father grabada ...

 

Automóviles multicombustible, de varios fabricantes, conocidos popularmente como autos flex, que funcionan con cualquier mezcla de etanol y gasolina . Multicombustible o policombustible es cualquier tipo de motor, caldera, calentador u otro dispositivo de quema de combustible que está diseñado para quemar múltiples tipos de combustibles durante su funcionamiento. Una aplicación común de la tecnología multicombustible es en entornos militares, donde el combustible diésel o de turbina d...

ポケットモンスター (アニメ) > ポケットモンスター (劇場版) > 劇場版ポケットモンスター ダイヤモンド&パール ギラティナと氷空の花束 シェイミ 劇場版ポケットモンスターダイヤモンド&パールギラティナと氷空(そら)の花束 シェイミ監督 湯山邦彦脚本 園田英樹製作 吉川兆二深沢幹彦盛武源岡本順哉製作総指揮 久保雅一伊藤憲二郎出演者 松本梨香

 

Suku BozoAnak perempuan Bozo dari Bamako, MaliJumlah populasi132.100Daerah dengan populasi signifikanBahasaBahasa Bozo, PrancisAgamaIslam, Animisme Suku Bozo adalah kelompok etnis yang menetap di tepi Sungai Niger di Mali. Nama Bozo berasal dari bahasa Bambara bo-so yang berarti rumah jerami. Suku Bozo menerima penggunaan istilah ini untuk mengacu kepada seluruh kelompok etnis Bozo, tetapi mereka sendiri tergabung dalam klan-klannya tersendiri, seperti Sorogoye, Hain, dan Tieye. Mereka dikena...

 

Konsonan hampiran langit-langit belakangɰNomor IPA154Pengkodean karakterEntitas (desimal)&#624;Unikode (heks)U+0270X-SAMPAM\Kirshenbaumj<vel>Braille Gambar Sampel suaranoicon sumber · bantuan Konsonan hampiran langit-langit belakang adalah jenis dari suara konsonan langit-langit belakang yang digunakan dalam berbagai bahasa. Simbol IPAnya adalah ⟨ɰ⟩. Dalam bahasa Indonesia tidak ada huruf yang mewakili [ɰ]. Kata-kata Bahasa Kata IPA Arti Cherokee ᏩᏥ wa-tsi [...

غور الأردنمعلومات عامةجزء من أخدود وادي الأردن البلد الأردنإسرائيل موجود بالقرب من المسطح المائي نهر الأردن السلسلة الجبلية Naftali Mountains (en) الإحداثيات 32°19′02″N 35°34′12″E / 32.317222°N 35.57°E / 32.317222; 35.57 لديه جزء أو أجزاء Ghor (en) تعديل - تعديل مصدري - تعديل ويكي بيانات 32°19′02...

 

CBS/MyNetworkTV affiliate in Dothan, Alabama This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WTVY TV – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this template message) WTVY Dothan, AlabamaUnited StatesChannelsDigital: 36 (UHF)Virtual: 4BrandingNews 4My 4 (...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bernadette Rostenkowski – berita · surat kabar · buku · cendekiawan · JSTOR Bernadette RostenkowskiPenampilanperdanaThe Vengeance FormulationPemeranMelissa RauchInformasiGelarDoctorPekerjaanMicrobiologis...

Trinidad and Tobago politician Satnarayan MaharajCMSecretary General of the Sanatan Dharma Maha SabhaIn office1977 – November 16, 2019DharmacharyaPt. Dr. Rampersad Parasram (5 May 2019-16 November 2019)[3]Pt. Uttam Maharaj (30 April 2005-d. 29 November 2018)[4][5]Pt. Krishna Maharaj (1986-2003)[6]Pt. Sahadeo Persad Dubay Sharma (d. 1986)[7][8]UpadharmacharyaPt. Ganpat Maharaj[9]President GeneralPt. Krishna Rambally (2018-16 No...

 

時代劇専門チャンネル時代劇専門チャンネルHD刺激、感激、時代劇。365日時代劇だけを放送する唯一のチャンネル基本情報運営(番組供給)事業者 日本映画放送株式会社放送(配信)開始 1998年7月14日HD放送(配信)開始 2009年10月1日ジャンル 国内ドラマ・バラエティ・舞台放送内容 時代劇映画・テレビ時代劇視聴可能世帯数 8,035,071世帯(2017年11月末現在)衛星基幹放...

 

1113 Flyover Jatinegara Halte TransjakartaHalte Flyover Jatinegara pada 2022LetakKotaJakarta TimurDesa/kelurahanPisangan Baru, MatramanKodepos13110AlamatJalan Bekasi Barat RayaKoordinat6°12′55″S 106°52′25″E / 6.2151409°S 106.873593°E / -6.2151409; 106.873593Koordinat: 6°12′55″S 106°52′25″E / 6.2151409°S 106.873593°E / -6.2151409; 106.873593Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukMelalui jemba...

1991 studio album by FobiaMundo FelizStudio album by FobiaReleased1 January 1991GenreRock en españolLabelRCA InternationalFobia chronology Fobia(1990) Mundo Feliz(1991) Leche(1993) Mundo Feliz was the second album released by Mexican rock band Fobia in 1991. Track listing Brincas (Jump) El Pepinillo Marino (The sea cucumber) Camila (Camila) El cerebro (The brain) Caminitos hacia el Cosmos (Little roads towards the Cosmos) El diablo (The devil) La fecha especial (The special date) Sac...

 

Heraldic symbol of Wales Y Ddraig Goch redirects here. For the Welsh national flag, see Flag of Wales. The Welsh Dragon (Y Ddraig Goch). The Welsh Dragon (Welsh: y Ddraig Goch, meaning 'the red dragon'; pronounced [ə ˈðraiɡ ˈɡoːχ]) is a heraldic symbol that represents Wales and appears on the national flag of Wales. Ancient leaders of the Celtic Britons that are personified as dragons include Maelgwn Gwynedd, Mynyddog Mwynfawr and Urien Rheged. Later Welsh dragons include Owai...

 

1960 studio album by The Joe Newman Quintet Featuring Frank WessJive at FiveStudio album by The Joe Newman Quintet Featuring Frank WessReleased1960RecordedMay 4, 1960StudioVan Gelder Studio, Englewood Cliffs, NJGenreJazzLength36:09LabelSwingvilleSVLP 2011ProducerThe Sound of AmericaJoe Newman chronology Counting Five in Sweden(1958) Jive at Five(1960) Good 'n' Groovy(1961) Jive at Five is an album by trumpeter Joe Newman featuring tracks recorded with members of the Count Basie Orches...

Hospital in County Laois, IrelandMidlands Regional Hospital, PortlaoiseHealth Service ExecutiveMidland Regional HospitalShown in IrelandGeographyLocationPortlaoise, County Laois, IrelandCoordinates53°02′16″N 7°16′33″W / 53.0377°N 7.2758°W / 53.0377; -7.2758OrganisationCare systemHSETypeRegionalServicesEmergency departmentYesBeds200HistoryOpened1936LinksWebsitewww2.hse.ie/services/hospitals/midland-regional-hospital-portlaoise/ The Midlands Regional Hospital...

 

  لمعانٍ أخرى، طالع حزب صهر العبيد (توضيح). الحزب الديمقراطيD (بالإنجليزية)Dem (بالإنجليزية) الشعارالتأسيسالاسم الرسمي Democratic Party (بالإنجليزية) النوع حزب سياسي البلد الولايات المتحدة المقر الرئيسي واشنطن على الخريطة التأسيس 1828 اندمج في .الشخصياتالمؤسس نذير سمير مجرن.قتا...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!