Federigo Enriques

Federigo Enriques
Born(1871-01-05)5 January 1871
Died14 June 1946(1946-06-14) (aged 75)
NationalityItalian
Alma materScuola Normale Superiore di Pisa
Known forEnriques surface
Enriques–Babbage theorem
Enriques–Kodaira classification
Scientific career
FieldsMathematics
InstitutionsUniversity of Bologna
Sapienza University of Rome
Doctoral advisorEnrico Betti
Guido Castelnuovo

Abramo Giulio Umberto Federigo Enriques (5 January 1871 – 14 June 1946) was an Italian mathematician, now known principally as the first to give a classification of algebraic surfaces in birational geometry, and other contributions in algebraic geometry.

Biography

Enriques was born in Livorno, and brought up in Pisa, in a Sephardi Jewish family of Portuguese descent. His younger brother was zoologist Paolo Enriques who was also the father of Enzo Enriques Agnoletti and Anna Maria Enriques Agnoletti. He became a student of Guido Castelnuovo (who later became his brother-in-law after marrying his sister Elbina), and became an important member of the Italian school of algebraic geometry. He also worked on differential geometry. He collaborated with Castelnuovo, Corrado Segre and Francesco Severi. He had positions at the University of Bologna, and then the University of Rome La Sapienza. In 1931, he swore allegiance to fascism, and in 1933 he became a member of the PNF. Despite this, he lost his position in 1938, when the Fascist government enacted the "leggi razziali" (racial laws), which in particular banned Jews from holding professorships in Universities.

The Enriques classification, of complex algebraic surfaces up to birational equivalence, was into five main classes, and was background to further work until Kunihiko Kodaira reconsidered the matter in the 1950s. The largest class, in some sense, was that of surfaces of general type: those for which the consideration of differential forms provides linear systems that are large enough to make all the geometry visible. The work of the Italian school had provided enough insight to recognise the other main birational classes. Rational surfaces and more generally ruled surfaces (these include quadrics and cubic surfaces in projective 3-space) have the simplest geometry. Quartic surfaces in 3-spaces are now classified (when non-singular) as cases of K3 surfaces; the classical approach was to look at the Kummer surfaces, which are singular at 16 points. Abelian surfaces give rise to Kummer surfaces as quotients. There remains the class of elliptic surfaces, which are fiber bundles over a curve with elliptic curves as fiber, having a finite number of modifications (so there is a bundle that is locally trivial actually over a curve less some points). The question of classification is to show that any surface, lying in projective space of any dimension, is in the birational sense (after blowing up and blowing down of some curves, that is) accounted for by the models already mentioned.

No more than other work in the Italian school would the proofs by Enriques now be counted as complete and rigorous. Not enough was known about some of the technical issues: the geometers worked by a mixture of inspired guesswork and close familiarity with examples. Oscar Zariski started to work in the 1930s on a more refined theory of birational mappings, incorporating commutative algebra methods. He also began work on the question of the classification for characteristic p, where new phenomena arise. The schools of Kunihiko Kodaira and Igor Shafarevich had put Enriques' work on a sound footing by about 1960.

Works

Articles

On Scientia.

References

  1. ^ Evans, G. C. (1925). "Review of Lezioni sulla Teoria Geometrica delle Equazioni e delle Funzioni Algebriche by F. Enriques. Additional book information: Vol. I and vol. II. Bologna, O. Chisini, 1915, 1918". Bull. Amer. Math. Soc. 31: 449–452. doi:10.1090/S0002-9904-1925-04091-4.
  2. ^ Enriques, F. (1914). Problems of Science; translated by Katharine Royce, with an introduction by Josiah Royce{{cite book}}: CS1 maint: postscript (link)
  3. ^ Bennett, A. A. (1930). "Review: Zur Geschichte der Logik by F. Enriques" (PDF). Bull. Amer. Math. Soc. 36 (9): 613. doi:10.1090/s0002-9904-1930-05000-4.

Read other articles:

RT-2PM TopolSS-25 Sickle RT-2PM TopolSS-25 Sickle Jenis Rudal balistik antarbenua Negara asal  Uni Soviet Sejarah pemakaian Masa penggunaan 1988-sekarang Digunakan oleh Russian Strategic Rocket Forces Sejarah produksi Perancang Moscow Institute of Thermal Technology Produsen Votkinsk Machine Building Plant Spesifikasi Berat 45.100 kg (99.400 pon) Panjang 215 m (705 ft) Diameter 18 m (59 ft) Hulu ledak Hulu ledak tunggal, 550 kt Jenis ...

 

أونترأوفيتزير تعديل مصدري - تعديل   أونترأوفيتزيرهي رتبة عسكرية في البوندسوير والقوات المسلحة السابقة الناطقة بالألمانية ( Heer و Luftwaffe ). تعادلها رتبة رقيب أو ستاف سيرجينت في القوات المسلحة الناطقة بالإنجليزية. كما تعتبر اسم لمجموعة رتب الضباط غير المفوضين أي ضباط الصف. أ...

 

شلوسك فروتسلاو تأسس عام 1947  الملعب ملعب مييسكي  البلد بولندا  الدوري الدوري البولندي الممتاز  المدرب تاديوز بافووفسكي (19 فبراير 2018–ديسمبر 2018)جاسيك ماجييرا (21 أبريل 2023–)  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   ملعب مييسكي (فروتسواف) نادي شلوسك ف...

صوفيا سميث معلومات شخصية الميلاد 18 نوفمبر 1978 (العمر 45 سنة)هيوستن  مركز اللعب وسط الجنسية اليونان  المدرسة الأم جامعة كورنيل  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2004 Houston Stars [الإنجليزية]‏ المنتخب الوطني 2004 منتخب اليونان لكرة القدم للسيدات 31 (?) (0) المواقع مُعرِّف...

 

起点。奥に見える天竜橋は二輪以外の自動車通行不可 長野県道430号為栗和合線(ながのけんどう430ごう してぐりわごうせん)は、長野県下伊那郡天龍村と阿南町を結ぶ一般県道。 概要 起点(為栗駅前)から天竜橋までの区間は、二輪以外の自動車の通行はできない。 路線データ 起点:下伊那郡天龍村大字平岡字為栗(飯田線為栗駅前) 終点:下伊那郡阿南町和合(交

 

Museum Sasmitaloka Panglima Besar (Pangsar) Jenderal Sudirmanꦩꦸꦱꦩ꧀​ꦱꦱ꧀ꦩꦶꦠꦭꦺꦴꦏ​ꦥꦔ꧀ꦭꦶꦩ​ꦧꦼꦱꦂ​ꦗꦼꦤ꧀ꦢꦼꦫꦭ꧀​ꦱꦸꦢꦶꦂꦩꦤ꧀Informasi umumGaya arsitekturMuseum sejarahKotaJl. Bintaran Wetan 3, YogyakartaNegaraIndonesiaInformasi lainAkses transportasi umum 1A   4B  Pakualaman 4A   1B  Museum Biologi Museum Sasmitaloka Panglima Besar (Pangsar) Jenderal Sudirman (bahasa Jawa: Han...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 31 de mayo de 2014. Vaguada o thalweg. La vaguada es la línea que marca la parte más profunda de un valle, y es el camino por el que discurren las aguas de las corrientes naturales. En términos científicos, se utiliza también el nombre de Talweg, una voz procedente del alemán que significa «camino del valle», y que es la línea que une los puntos de menor altura en un v...

 

Desi Albert MamahitKepala Badan Keamanan Laut 5Masa jabatan23 Juni 2015 – 16 Maret 2016PendahuluLaksda TNI Sri Mohamad DarojatimPenggantiLaksdya TNI Arie SoedewoKepala Pelaksana Harian Badan Koordinasi Keamanan LautMasa jabatanApril 2014 – 24 November 2014PendahuluLaksdya TNI Bambang SuwartoPenggantiLaksda TNI Sri Mohamad Darojatim Informasi pribadiLahir22 Desember 1959 (umur 63)Bandung, Jawa BaratKebangsaanIndonesiaPartai politik  PerindoSuami/istriDr...

 

ميمة ميمه  - city -    تقسيم إداري البلد  إيران[1][2] المحافظة أصفهان المقاطعة مقاطعة شاهين شهر وميمه الناحية Meymeh خصائص جغرافية إحداثيات 33°26′46″N 51°10′06″E / 33.44611°N 51.16833°E / 33.44611; 51.16833 الارتفاع 2005 متر  السكان التعداد السكاني 5733 نسمة (إحصاء 2006) مع

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) هارولد بورنس معلومات شخصية الميلاد 4 ديسمبر 1926  الوفاة 24 مارس 2013 (86 سنة)   مواطنة الولايات المتحدة  مناصب الحياة العملية المهنة سياسي  الحزب الحزب الجم

 

أم البريجات   تقسيم إداري البلد مصر  [1] التقسيم الأعلى محافظة الفيوم  خصائص جغرافية إحداثيات 29°06′33″N 30°45′47″E / 29.109239°N 30.763135°E / 29.109239; 30.763135  الارتفاع 27 متر[2]  معلومات أخرى التوقيت ت ع م+02:00  الرمز الجغرافي 347377  تعديل مصدري - تعديل   هذه ا

 

2012 state amendment North Carolina Amendment 1 May 8, 2012 North Carolina Same-Sex Marriage AmendmentResults Choice Votes % Yes 1,317,178 61.04% No 840,802 38.96% Valid votes 2,157,980 100.00% Invalid or blank votes 0 0.00% Total votes 2,157,980 100.00% Registered voters/turnout 6,296,759 34.27% Yes   80–90%   70–80%   60–70%   50–60% No   70–80%   60–70%   50–60% . Elections in North Carolina Federal g...

Fictional character Judah Ben-HurBen-Hur characterCharlton Heston as Judah Ben-Hur from Ben-Hur (1959)First appearanceA Tale of the Christ (1880, novel)Last appearanceBen-Hur (2016, film)Created byLew WallacePortrayed by Ramon Novarro (1925) Charlton Heston (1959) Joseph Morgan (2010) Jack Huston (2016) Voiced byCharlton Heston (2003)In-universe informationAliasesBen-HurSon of HurYoung ArriusOccupationPrinceGalley SlaveCharioteerFamilyMiriam (mother)Tirzah (sister)SpouseEstherReligionJudaism,...

 

Mountain pass in California, US For the original Tejon Pass, see Old Tejon Pass. Tejon PassPortezuelo de CortesPortezuela de CastacThe top of the Tejon Pass on southbound Interstate 5 (2009)Elevation4,144 ft (1,263 m)Traversed by I-5LocationLos Angeles and Kern counties, CaliforniaRangeSan Emigdio, Tehachapi, Sierra Pelona, and Topatopa MountainsCoordinates34°48′11″N 118°52′37″W / 34.80302°N 118.87707°W / 34.80302; -118.87707Location in California The Tejon...

 

1999 documentary directed by Chris Smith This article is about the documentary featuring Mark Borchardt. For American films in general, see Cinema of the United States. American MoviePromotional release posterDirected byChris SmithProduced by Sarah Price Chris Smith Starring Mark Borchardt Mike Schank CinematographyChris SmithEdited by Barry Poltermann Jun Diaz Music byMike SchankProductioncompanies C-Hundred Film Corporation Civilian Pictures Bluemark Productions Distributed bySony Pictures ...

Capital of Telangana, India For the Pakistani city, see Hyderabad, Sindh. For other uses, see Hyderabad (disambiguation). Metropolis in Telangana, IndiaHyderabadMetropolisClockwise from top: Charminar during Ramzan night bazaar, Qutb Shahi tombs, Buddha Statue at Hussain Sagar, Falaknuma Palace, skyline at Gachibowli and Birla Mandir. Logo of the Greater Hyderabad Municipal CorporationInteractive Map Outlining HyderabadHyderabadLocation in HyderabadShow map of HyderabadHyderabadLocation in Te...

 

83rd Indiana Infantry RegimentActiveSeptember 4, 1862 – June 3, 1865CountryUnited StatesAllegianceUnionBranchInfantryEngagementsYazoo Pass ExpeditionBattle of Chickasaw BayouBattle of Arkansas PostBattle of Champion HillSiege of Vicksburg, May 19 & May 22 assaultsChattanooga CampaignBattle of Missionary RidgeAtlanta CampaignBattle of ResacaBattle of DallasBattle of New Hope ChurchBattle of AllatoonaBattle of Kennesaw MountainBattle of AtlantaSiege of AtlantaBattle of JonesboroughBat...

 

1928 film by Mervyn LeRoy Naughty BabyLobby cardDirected byMervyn LeRoyWritten byCharles Beahan (story)Garrett FortGerald GeraghtyThomas J. GeraghtyStarringAlice WhiteJack MulhallThelma ToddDoris DawsonJames FordCinematographyErnest HallerEdited byLeRoy StoneMusic byGerard CarbonaraDistributed byFirst National PicturesRelease date December 16, 1928 (1928-12-16) Running time7 reelsCountryUnited StatesLanguageSound (Synchronized) (English intertitles) Naughty Baby is a 1928 Ameri...

Species of bird Cape petrel D. capense australe south east of Tasmania Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Procellariiformes Family: Procellariidae Genus: DaptionStephens, 1826 Species: D. capense Binomial name Daption capense(Linnaeus, 1758) Subspecies D. capense capense (Linnaeus, 1758) D. capense australe Mathews, 1913 Synonyms Procellaria capensis Linnaeus, ...

 

1982 science fiction film This article is about the 1982 film. For the Lost in Space episode, see List of Lost in Space episodes § Season 2: 1966–67. Not to be confused with Forbidden Worlds. Forbidden WorldPromotional posterDirected byAllan HolzmanWritten byTim CurnenStory byR.J. RobertsonJim WynorskiProduced byRoger CormanStarring Jesse Vint Dawn Dunlap June Chadwick Linden Chiles Fox Harris Raymond Oliver Scott Paulin CinematographyTim SuhrstedtEdited byAllan HolzmanMartin Nicholso...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!