Examples of Markov chains

This article contains examples of Markov chains and Markov processes in action.

All examples are in the countable state space. For an overview of Markov chains in general state space, see Markov chains on a measurable state space.

Discrete-time

Board games played with dice

A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game. In the above-mentioned dice games, the only thing that matters is the current state of the board. The next state of the board depends on the current state, and the next roll of the dice. It does not depend on how things got to their current state. In a game such as blackjack, a player can gain an advantage by remembering which cards have already been shown (and hence which cards are no longer in the deck), so the next state (or hand) of the game is not independent of the past states.

Random walk Markov chains

A center-biased random walk

Consider a random walk on the number line where, at each step, the position (call it x) may change by +1 (to the right) or −1 (to the left) with probabilities:

(where c is a constant greater than 0)

For example, if the constant, c, equals 1, the probabilities of a move to the left at positions x = −2,−1,0,1,2 are given by respectively. The random walk has a centering effect that weakens as c increases.

Since the probabilities depend only on the current position (value of x) and not on any prior positions, this biased random walk satisfies the definition of a Markov chain.

Gambling

Suppose that one starts with $10, and one wagers $1 on an unending, fair, coin toss indefinitely, or until all of the money is lost. If represents the number of dollars one has after n tosses, with , then the sequence is a Markov process. If one knows that one has $12 now, then it would be expected that with even odds, one will either have $11 or $13 after the next toss. This guess is not improved by the added knowledge that one started with $10, then went up to $11, down to $10, up to $11, and then to $12. The fact that the guess is not improved by the knowledge of earlier tosses showcases the Markov property, the memoryless property of a stochastic process.[1]

A model of language

This example came from Markov himself.[2] Markov chose 20,000 letters from Pushkin’s Eugene Onegin, classified them into vowels and consonants, and counted the transition probabilities.The stationary distribution is 43.2 percent vowels and 56.8 percent consonants, which is close to the actual count in the book.[3]

A simple weather model

The probabilities of weather conditions (modeled as either rainy or sunny), given the weather on the preceding day, can be represented by a transition matrix:[4]

The matrix P represents the weather model in which a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day.[4] The columns can be labelled "sunny" and "rainy", and the rows can be labelled in the same order.

The above matrix as a graph.

(P)i j is the probability that, if a given day is of type i, it will be followed by a day of type j.

Notice that the rows of P sum to 1: this is because P is a stochastic matrix.[4]

Predicting the weather

The weather on day 0 (today) is known to be sunny. This is represented by an initial state vector in which the "sunny" entry is 100%, and the "rainy" entry is 0%:

The weather on day 1 (tomorrow) can be predicted by multiplying the state vector from day 0 by the transition matrix:

Thus, there is a 90% chance that day 1 will also be sunny.

The weather on day 2 (the day after tomorrow) can be predicted in the same way, from the state vector we computed for day 1:

or

General rules for day n are:

Steady state of the weather

In this example, predictions for the weather on more distant days change less and less on each subsequent day and tend towards a steady state vector.[5] This vector represents the probabilities of sunny and rainy weather on all days, and is independent of the initial weather.[5]

The steady state vector is defined as:

but converges to a strictly positive vector only if P is a regular transition matrix (that is, there is at least one Pn with all non-zero entries).

Since q is independent from initial conditions, it must be unchanged when transformed by P.[5] This makes it an eigenvector (with eigenvalue 1), and means it can be derived from P.[5]

In layman's terms, the steady-state vector is the vector that, when we multiply it by P, we get the exact same vector back.[6] For the weather example, we can use this to set up a matrix equation:

and since they are a probability vector we know that

Solving this pair of simultaneous equations gives the steady state vector:

In conclusion, in the long term about 83.3% of days are sunny. Not all Markov processes have a steady state vector. In particular, the transition matrix must be regular. Otherwise, the state vectors will oscillate over time without converging.

Stock market

Using a directed graph, the probabilities of the possible states a hypothetical stock market can exhibit is represented. The matrix on the left shows how probabilities corresponding to different states can be arranged in matrix form.

A state diagram for a simple example is shown in the figure on the right, using a directed graph to picture the state transitions. The states represent whether a hypothetical stock market is exhibiting a bull market, bear market, or stagnant market trend during a given week. According to the figure, a bull week is followed by another bull week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the time. Labeling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this example is

The distribution over states can be written as a stochastic row vector x with the relation x(n + 1) = x(n)P. So if at time n the system is in state x(n), then three time periods later, at time n + 3 the distribution is

In particular, if at time n the system is in state 2 (bear), then at time n + 3 the distribution is

Using the transition matrix it is possible to calculate, for example, the long-term fraction of weeks during which the market is stagnant, or the average number of weeks it will take to go from a stagnant to a bull market. Using the transition probabilities, the steady-state probabilities indicate that 62.5% of weeks will be in a bull market, 31.25% of weeks will be in a bear market and 6.25% of weeks will be stagnant, since:

A thorough development and many examples can be found in the on-line monograph Meyn & Tweedie 2005.[7]

A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n, then the probability that it moves to state x at time n + 1 depends only on the current state.

Continuous-time

A birth–death process

If one pops one hundred kernels of popcorn in an oven, each kernel popping at an independent exponentially-distributed time, then this would be a continuous-time Markov process. If denotes the number of kernels which have popped up to time t, the problem can be defined as finding the number of kernels that will pop in some later time. The only thing one needs to know is the number of kernels that have popped prior to the time "t". It is not necessary to know when they popped, so knowing for previous times "t" is not relevant.

The process described here is an approximation of a Poisson point process – Poisson processes are also Markov processes.

See also

References

  1. ^ Øksendal, B. K. (Bernt Karsten), 1945- (2003). Stochastic differential equations : an introduction with applications (6th ed.). Berlin: Springer. ISBN 3540047581. OCLC 52203046.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  2. ^ Markov, A. A. "An example of statistical analysis of the text of eugene onegin illustrating the association of trials into a Chain." Bulletin de lAcadamie Imperiale des Sciences de St. Petersburg, ser 6 (1913): 153162.
  3. ^ Grinstead and Snell’s Introduction to Probability, page 465
  4. ^ a b c Van Kampen, N.G. (2007). Stochastic Processes in Physics and Chemistry. NL: North Holland Elsevier. pp. 73–95. ISBN 978-0-444-52965-7.
  5. ^ a b c d Van Kampen, N.G. (2007). Stochastic Processes in Physics and Chemistry. NL: North Holland Elsevier. pp. 73–95. ISBN 978-0-444-52965-7.
  6. ^ "Going steady (state) with Markov processes". Bloomington Tutors.
  7. ^ S. P. Meyn and R.L. Tweedie, 2005. Markov Chains and Stochastic Stability Archived 2013-09-03 at the Wayback Machine

Read other articles:

В Википедии есть статьи о других людях с такой фамилией, см. Андреев; Андреев, Вадим. Вадим Константинович Андреев Дата рождения 28 января 1927(1927-01-28) Место рождения ст. Новая Покровка, Острогожский уезд, Воронежская губерния, РСФСР, СССР[1] Дата смерти 1 августа 2020(2020-08-01...

 

PeachesAlbum mini karya KaiDirilis30 November 2021 (2021-11-30)GenreR&BDance-popBahasaKoreanLabelSMDreamusKronologi Kai Kai(2020) Peaches(2021) Singel dalam album Peaches PeachesDirilis: 30 November 2021 Peaches adalah album mini kedua dari penyanyi Korea Selatan Kai. Album ini dirilis pada tanggal 30 November 2021, oleh SM Entertainment. Album mini ini terdiri dari enam lagu termasuk singel utama yang bernama sama. Album fisik tersedia dalam tiga versi yaitu dua versi photobook ...

 

Rafer Johnson Información personalNacimiento 18 de agosto de 1934 Hillsboro (Estados Unidos) Fallecimiento 2 de diciembre de 2020 Sherman Oaks (Estados Unidos) Causa de muerte Accidente cerebrovascular Nacionalidad EstadounidenseLengua materna Inglés Características físicasAltura 1,9 m Peso 91 kg FamiliaHijos Jenny Johnson Jordan EducaciónEducado en Universidad de California en Los ÁngelesKingsburg High School Información profesionalOcupación Actor, atleta, baloncestista y d...

?Вівчарик бамбуковий Охоронний статус Найменший ризик (МСОП 3.1)[1] Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Птахи (Aves) Ряд: Горобцеподібні (Passeriformes) Родина: Вівчарикові (Phylloscopidae) Рід: Вівчарик (Phylloscopus) Вид: Вівчарик б

 

«Ніка» Повна назва Жіночий футбольний клубНіка (Миколаїв) Засновано 2014 Населений пункт Миколаїв,  Україна Стадіон Парк Перемоги Вміщує 5 000 Ліга Вища ліга України 2020/21 Домашня Виїзна У Вікіпедії є статті про інші значення цього терміна: Ніка (значення). Жіночий футбольн...

 

?Фуліго жовтий Фуліго жовтий на мертвій деревині Біологічна класифікація Царство: Амебозої (Amoebozoa) Тип: Міксоміцети (Mycetozoa) Клас: Myxogastria Ряд: Фізаральні (Physarales) Родина: Фізарові (Physaraceae) Рід: Фуліго (Fuligo) Вид: Фуліго жовтий Біноміальна назва Fuligo septica(L.) F.H.Wigg[en] (1780) Синоніми[1]...

1996 single by Vince GillPretty Little AdrianaSingle by Vince Gillfrom the album High Lonesome Sound B-sideTell Me LoverReleasedOctober 28, 1996GenreCountryLength3:30LabelMCA NashvilleSongwriter(s)Vince GillProducer(s)Tony BrownVince Gill singles chronology Worlds Apart (1996) Pretty Little Adriana (1996) A Little More Love (1997) Pretty Little Adriana is a song written and recorded by American country music artist Vince Gill. It was released in October 1996 as the third single from the album...

 

علم الروبوتات النمائي (DevRob)، والذي يُطلق عليه في بعض الأحيان علم الروبوتات الوراثي اللاجيني، هو منهجية تستخدم أفكارًا مستعارة من النماء العصبي وعلم النفس التنموي لتطوير عقل الروبوتات المستقلة.[1][2][3] ويتم التركيز على الروبوتات الأحادية أو المتعددة من خلال مرا...

 

ABRIXASOrganisasiDeutsches Zentrum für Luft- und Raumfahrt Model teleskopObservatorium antariksaentitas lampau Panjang115 m (377 ft 4 in) Lebar18 m (59 ft 1 in) Massa470 kg (1.040 pon) [sunting di Wikidata] Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala. A Broadband Imaging X...

ماي ليتل بوني: إكويستريا غيرلس: رينبو روكسMy Little Pony: Equestria Girls - Rainbow Rocksmy little pony belongs to hasbroمعلومات عامةالتصنيف فيلم رسوم متحركة الصنف الفني كوميدي، فنتازياتاريخ الصدور 27 سبتمبر 2014مدة العرض 75 دقيقةاللغة الأصلية الإنجليزيةمأخوذ عن مهرتي الصغيرة: الصداقة سحر البلد كندا والولايا...

 

A fastener providing an expandable metal anchor Molly fastener A molly or molly bolt (often misspelled moly[1]) is a type of screw fastener that fastens objects to plaster or gypsum board hollow walls by providing an anchor to be lodged inside a hole and expanded once in position. Larger sizes permit reasonably heavy objects, such as shelving, flatscreen-TV mounts or central-heating radiators, to be attached to drywall in locations where there is no stud behind the drywall. For heavy ...

 

Historic house in New York, United States Not to be confused with Charles P. Noyes Cottage. United States historic placeNoyes CottageU.S. National Register of Historic PlacesU.S. Historic districtContributing property Noyes Cottage, November 2007Show map of New YorkShow map of the United StatesLocation16 Helen St., Saranac Lake, Harrietstown, New York, U.S.Coordinates44°19′37″N 74°7′40″W / 44.32694°N 74.12778°W / 44.32694; -74.12778Arealess than one acreBui...

American racing driver NASCAR driver Dave Mader IIIMader during driver intros at Daytona in 2022.BornDavid George Mader III (1955-06-30) June 30, 1955 (age 68)Maylene, AlabamaAchievements1985, 1986, 1987 & 1988 All-American Challenge Series Champion 1978 Snowball Derby WinnerNASCAR Cup Series career10 races run over 5 yearsBest finish45th (1992)First race1988 Busch 500 (Bristol)Last race1992 Coca-Cola 600 (Charlotte) Wins Top tens Poles 0 0 0 NASCAR Xfinity Series career22 races run ...

 

Church in Michigan, United StatesSt. Mary, Our Lady of Mount Carmel CathedralSt. Mary's Cathedral in 2018Location in Michigan45°02′01″N 84°40′59″W / 45.0335°N 84.6831°W / 45.0335; -84.6831Location606 N. Ohio Ave.Gaylord, MichiganCountryUnited StatesDenominationRoman Catholic ChurchWebsitewww.stmarycathedral.orgHistoryFounded1884DedicationOur Lady of Mount CarmelConsecratedJune 25, 1976ArchitectureHeritage designationMichigan State Historic Site (1901 church...

 

U.S. Navy's human resources bureau Bureau of Naval PersonnelCurrent logo of the NPCFounded1862; 161 years ago (1862)CountryUnited StatesAllegiance United States of AmericaBranch United States NavyTypeBureauRoleHuman ResourcesWebsitewww.npc.navy.milCommandersChief of Naval PersonnelVADM Richard J. Cheeseman Jr.Military unit The Bureau of Naval Personnel (BUPERS) in the United States Department of the Navy is similar to the human resources department of a corporation...

Australia padaOlimpiadeKode IOCAUSKONKomite Olimpiade AustraliaSitus webwww.olympics.com.auMedali 152 171 193 Total 516 Penampilan Musim Panas18961900190419081912192019241928193219361948195219561960196419681972197619801984198819921996200020042008201220162020Penampilan Musim Dingin193619481952195619601964196819721976198019841988199219941998200220062010201420182022 Berikut ini adalah daftar pembawa bendera yang mewakili Australia pada Olimpiade.[1] Para pembawa bendera membawa bendera n...

 

Long-duration mission to the International Space Station ISS Expedition 35Promotional PosterMission typeISS Expedition ExpeditionSpace stationInternational Space StationBegan15 March 2013 (2013-03-15)Ended13 May 2013 (2013-05-14)[1]Arrived aboardSoyuz TMA-07MSoyuz TMA-08MDeparted aboardSoyuz TMA-07MSoyuz TMA-08M CrewCrew size6MembersExpedition 34/35:Chris HadfieldThomas MarshburnRoman RomanenkoExpedition 35/36:Christopher CassidyPavel VinogradovAleksandr Misurkin Expedition ...

 

VRT NWS logo VRT NWS (voorheen Nieuws+) is de digitale radionieuwszender van de VRT. Het is een actualiteitenzender, te beluisteren met een digitaal radiotoestel (DAB), via internet of via digitale televisie. Via DAB zendt Nieuws+ het recentste nieuwsbulletin van Radio 1 in een lus uit. Als men met een digitaal radiotoestel luistert, geeft het scherm van het DAB-toestel de titels van het snelnieuws weer. Ook breaking news wordt direct uitgezonden op VRT NWS. Eind augustus 2017 wijzigde Nieuws...

Nohkancab Osnovni podaci Država  Meksiko Savezna država Quintana Roo Opština Felipe Carrillo Puerto Stanovništvo Stanovništvo (2014.) 16[1] Geografija Koordinate 19°48′48″N 87°59′33″W / 19.81333°N 87.9925°W / 19.81333; -87.9925 Vremenska zona UTC-5 Nadmorska visina 13[1] m NohkancabNohkancab na karti Meksika Nohkancab je naselje u Meksiku, u saveznoj državi Quintana Roo, u opštini Felipe Carrillo Puerto. Prema proceni iz 2014. g...

 

International cricket tour Pakistan cricket team in England in 2010    Pakistan EnglandDates 29 July – 22 September 2010Captains Salman Butt (Tests)Shahid Afridi (ODIs & T20Is) Andrew Strauss (Tests and ODIs)Paul Collingwood (T20Is)Test seriesResult England won the 4-match series 3–1Most runs Umar Akmal (184)[1] Jonathan Trott (404)[1]Most wickets Mohammad Amir (19)[2] James Anderson (23)[2]Player of the series Mohammad Amir (Pak), Jonath...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!