Energy–momentum relation

In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

It can be formulated as:

This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime[1][2][3] and that the particles are free. Total energy is the sum of rest energy and relativistic kinetic energy: Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation , where total energy in this case is equal to rest energy.

The Dirac sea model, which was used to predict the existence of antimatter, is closely related to the energy–momentum relation.

Connection to E = mc2

Einstein Triangle

The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc2 relates total energy E to the (total) relativistic mass m (alternatively denoted mrel or mtot), while E0 = m0c2 relates rest energy E0 to (invariant) rest mass m0.

Unlike either of those equations, the energy–momentum equation (1) relates the total energy to the rest mass m0. All three equations hold true simultaneously.

Special cases

  1. If the body is a massless particle (m0 = 0), then (1) reduces to E = pc. For photons, this is the relation, discovered in 19th century classical electromagnetism, between radiant momentum (causing radiation pressure) and radiant energy.
  2. If the body's speed v is much less than c, then (1) reduces to E = 1/2m0v2 + m0c2; that is, the body's total energy is simply its classical kinetic energy (1/2m0v2) plus its rest energy.
  3. If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E0 and m = m0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same.

A more general form of relation (1) holds for general relativity.

The invariant mass (or rest mass) is an invariant for all frames of reference (hence the name), not just in inertial frames in flat spacetime, but also accelerated frames traveling through curved spacetime (see below). However the total energy of the particle E and its relativistic momentum p are frame-dependent; relative motion between two frames causes the observers in those frames to measure different values of the particle's energy and momentum; one frame measures E and p, while the other frame measures E and p, where EE and pp, unless there is no relative motion between observers, in which case each observer measures the same energy and momenta. Although we still have, in flat spacetime:

The quantities E, p, E, p are all related by a Lorentz transformation. The relation allows one to sidestep Lorentz transformations when determining only the magnitudes of the energy and momenta by equating the relations in the different frames. Again in flat spacetime, this translates to;

Since m0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E and p as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as determined by particle physicists in a lab, and not moving with the particles).

In relativistic quantum mechanics, it is the basis for constructing relativistic wave equations, since if the relativistic wave equation describing the particle is consistent with this equation – it is consistent with relativistic mechanics, and is Lorentz invariant. In relativistic quantum field theory, it is applicable to all particles and fields.[4]

Origins and derivation of the equation

The energy–momentum relation goes back to Max Planck's article[5] published in 1906. It was used by Walter Gordon in 1926 and then by Paul Dirac in 1928 under the form , where V is the amount of potential energy.[6][7]

The equation can be derived in a number of ways, two of the simplest include:

  1. From the relativistic dynamics of a massive particle,
  2. By evaluating the norm of the four-momentum of the system. This method applies to both massive and massless particles, and can be extended to multi-particle systems with relatively little effort (see § Many-particle systems below).

Heuristic approach for massive particles

For a massive object moving at three-velocity u = (ux, uy, uz) with magnitude |u| = u in the lab frame:[1]

is the total energy of the moving object in the lab frame,

is the three dimensional relativistic momentum of the object in the lab frame with magnitude |p| = p. The relativistic energy E and momentum p include the Lorentz factor defined by:

Some authors use relativistic mass defined by:

although rest mass m0 has a more fundamental significance, and will be used primarily over relativistic mass m in this article.

Squaring the 3-momentum gives:

then solving for u2 and substituting into the Lorentz factor one obtains its alternative form in terms of 3-momentum and mass, rather than 3-velocity:

Inserting this form of the Lorentz factor into the energy equation gives:

followed by more rearrangement it yields (1). The elimination of the Lorentz factor also eliminates implicit velocity dependence of the particle in (1), as well as any inferences to the "relativistic mass" of a massive particle. This approach is not general as massless particles are not considered. Naively setting m0 = 0 would mean that E = 0 and p = 0 and no energy–momentum relation could be derived, which is not correct.

Norm of the four-momentum

The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E and p. The green arrow is the four-momentum P of an object with length proportional to its rest mass m0. The green frame is the centre-of-momentum frame for the object with energy equal to the rest energy. The hyperbolae show the Lorentz transformation from one frame to another is a hyperbolic rotation, and Φ and Φ + η are the rapidities of the blue and green frames, respectively.

Special relativity

In Minkowski space, energy (divided by c) and momentum are two components of a Minkowski four-vector, namely the four-momentum;[8]

(these are the contravariant components).

The Minkowski inner product ⟨ , ⟩ of this vector with itself gives the square of the norm of this vector, it is proportional to the square of the rest mass m of the body:

a Lorentz invariant quantity, and therefore independent of the frame of reference. Using the Minkowski metric η with metric signature (− + + +), the inner product is

and

so

or, in natural units where c = 1,

General relativity

In general relativity, the 4-momentum is a four-vector defined in a local coordinate frame, although by definition the inner product is similar to that of special relativity,

in which the Minkowski metric η is replaced by the metric tensor field g:

solved from the Einstein field equations. Then:[9]

Units of energy, mass and momentum

In natural units where c = 1, the energy–momentum equation reduces to

In particle physics, energy is typically given in units of electron volts (eV), momentum in units of eV·c−1, and mass in units of eV·c−2. In electromagnetism, and because of relativistic invariance, it is useful to have the electric field E and the magnetic field B in the same unit (Gauss), using the cgs (Gaussian) system of units, where energy is given in units of erg, mass in grams (g), and momentum in g·cm·s−1.

Energy may also in theory be expressed in units of grams, though in practice it requires a large amount of energy to be equivalent to masses in this range. For example, the first atomic bomb liberated about 1 gram of heat, and the largest thermonuclear bombs have generated a kilogram or more of heat. Energies of thermonuclear bombs are usually given in tens of kilotons and megatons referring to the energy liberated by exploding that amount of trinitrotoluene (TNT).

Special cases

Centre-of-momentum frame (one particle)

For a body in its rest frame, the momentum is zero, so the equation simplifies to

where m0 is the rest mass of the body.

Massless particles

If the object is massless, as is the case for a photon, then the equation reduces to

This is a useful simplification. It can be rewritten in other ways using the de Broglie relations:

if the wavelength λ or wavenumber k are given.

Correspondence principle

Rewriting the relation for massive particles as:

and expanding into power series by the binomial theorem (or a Taylor series):

in the limit that uc, we have γ(u) ≈ 1 so the momentum has the classical form pm0u, then to first order in (p/m0c)2
(i.e. retain the term (p/m0c)2n
for n = 1 and neglect all terms for n ≥ 2) we have

or

where the second term is the classical kinetic energy, and the first is the rest energy of the particle. This approximation is not valid for massless particles, since the expansion required the division of momentum by mass. Incidentally, there are no massless particles in classical mechanics.

Many-particle systems

Addition of four momenta

In the case of many particles with relativistic momenta pn and energy En, where n = 1, 2, ... (up to the total number of particles) simply labels the particles, as measured in a particular frame, the four-momenta in this frame can be added;

and then take the norm; to obtain the relation for a many particle system:

where M0 is the invariant mass of the whole system, and is not equal to the sum of the rest masses of the particles unless all particles are at rest (see Mass in special relativity § The mass of composite systems for more detail). Substituting and rearranging gives the generalization of (1);

The energies and momenta in the equation are all frame-dependent, while M0 is frame-independent.

Center-of-momentum frame

In the center-of-momentum frame (COM frame), by definition we have:

with the implication from (2) that the invariant mass is also the centre of momentum (COM) mass–energy, aside from the c2 factor:

and this is true for all frames since M0 is frame-independent. The energies ECOM n are those in the COM frame, not the lab frame. However, many familiar bound systems have the lab frame as COM frame, since the system itself is not in motion and so the momenta all cancel to zero. An example would be a simple object (where vibrational momenta of atoms cancel) or a container of gas where the container is at rest. In such systems, all the energies of the system are measured as mass. For example, the heat in an object on a scale, or the total of kinetic energies in a container of gas on the scale, all are measured by the scale as the mass of the system.

Rest masses and the invariant mass

Either the energies or momenta of the particles, as measured in some frame, can be eliminated using the energy momentum relation for each particle:

allowing M0 to be expressed in terms of the energies and rest masses, or momenta and rest masses. In a particular frame, the squares of sums can be rewritten as sums of squares (and products):

so substituting the sums, we can introduce their rest masses mn in (2):

The energies can be eliminated by:

similarly the momenta can be eliminated by:

where θnk is the angle between the momentum vectors pn and pk.

Rearranging:

Since the invariant mass of the system and the rest masses of each particle are frame-independent, the right hand side is also an invariant (even though the energies and momenta are all measured in a particular frame).

Matter waves

Using the de Broglie relations for energy and momentum for matter waves,

where ω is the angular frequency and k is the wavevector with magnitude |k| = k, equal to the wave number, the energy–momentum relation can be expressed in terms of wave quantities:

and tidying up by dividing by (ħc)2 throughout:

This can also be derived from the magnitude of the four-wavevector

in a similar way to the four-momentum above.

Since the reduced Planck constant ħ and the speed of light c both appear and clutter this equation, this is where natural units are especially helpful. Normalizing them so that ħ = c = 1, we have:

Tachyon and exotic matter

The velocity of a bradyon with the relativistic energy–momentum relation

can never exceed c. On the contrary, it is always greater than c for a tachyon whose energy–momentum equation is[10]

By contrast, the hypothetical exotic matter has a negative mass[11] and the energy–momentum equation is

See also

References

  1. ^ a b Kleppner, Daniel; Robert J. Kolenkow (2010) [1973]. An Introduction to Mechanics. Cambridge University Press. pp. 499–500. ISBN 978-0-521-19821-9.
  2. ^ J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. pp. 149, 249. ISBN 978-0-470-01460-8.
  3. ^ D. McMahon (2006). Relativity. DeMystified. Mc Graw Hill (USA). p. 20. ISBN 0-07-145545-0.
  4. ^ D. McMahon (2008). Quantum Field Theory. DeMystified. Mc Graw Hill (USA). pp. 11, 88. ISBN 978-0-07-154382-8.
  5. ^ Planck, Max (1906). "Das Prinzip der Relativität und die Grundgleichungen der Mechanik". Verhandlungen der Deutschen Physikalischen Gesellschaft. 8 (7): 136–141.
  6. ^ Gordon, Walter (1926). "The Compton effect according to Schrödinger's theory". Z. Phys. 40: 117–133. doi:10.1007/BF01390840. S2CID 122254400.
  7. ^ Dirac, Paul (1928). "The Quantum Theory of the Electron". Proc. R. Soc. Lond. A. 117 (778): 610–624. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023.
  8. ^ J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. pp. 258–259. ISBN 978-0-470-01460-8.
  9. ^ J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. pp. 201, 649, 1188. ISBN 0-7167-0344-0.
  10. ^ G. Feinberg (1967). "Possibility of faster-than-light particles". Physical Review. 159 (5): 1089–1105. Bibcode:1967PhRv..159.1089F. doi:10.1103/PhysRev.159.1089.
  11. ^ Z.Y.Wang (2016). "Modern Theory for Electromagnetic Metamaterials". Plasmonics. 11 (2): 503–508. doi:10.1007/s11468-015-0071-7. S2CID 122346519.

Read other articles:

Take Two with Phineas and FerbPembuatDan PovenmireJeff Swampy MarshBerdasarkanPhineas dan Ferboleh Dan Povenmire and Jeff Swampy MarshPemeranVincent MartellaThomas SangsterAlyson StonerAshley TisdaleNegara asal Amerika SerikatBahasa asliInggrisJmlh. musim1Jmlh. episode20 (daftar episode)ProduksiDurasi2 menit 30 detikRumah produksiStudio B ProductionsHieroglyphic ProductionsDisney Television AnimationRilisJaringan asliDisney ChannelRilis asli3 Desember 2010 –25 November 2011 Take T...

 

Last Sinhalese monarch in the Kandy kingdom Sri Vikrama RajasinhaThrisinhaladheeshwara [1]LankeshwaraBhupathiSri Vikrama Rajasinha, King of Kandy.King of KandyReignJuly 17, 1798 – February 10, 1815Coronation1798PredecessorRajadhi RajasinhaSuccessorKingdom abolished(George III as King of British Ceylon)Born1780Madurai, Tamil Nadu, IndiaDied30 January 1832(1832-01-30) (aged 51)Vellore Fort, IndiaSpouse Sri Venakatha Rangammal Devi ​ ​(m. 1798)​ ...

 

Гаплогруппа X2 Тип мтДНК Время до БОП 15,700 years BP Предковая группа X1'2'3 > X Сестринские группы X1'2'3-a, X1'3 Субклады X2-a, X2f, X2k, X2p, X2q, X2r, X2s, X2t Мутации-маркеры T195C! , G1719A Гаплогруппа X2 — гаплогруппа митохондриальной ДНК человека. Содержание 1 Субклады 2 Распространение 2.1 Шотландия 2.2

Імператор Коґоняп. 光厳天皇 Народився 1 серпня 1313Помер 5 серпня 1364 (51 рік)Країна Сьоґунат МуроматіЯпоніяДіяльність суверенРід Імператорський дім ЯпоніїБатько Імператор Ґо-ФусіміМати Saionji NeishidРодичі Імператор Ханадзоно і Q11518295?Брати, сестри Shunshi-naishinnōd, Kōshi-naishinnōd, Sh...

 

La división de la República Democrática del Congo en provincias está establecida en la Constitución congoleña de 2005 (en francés). En su artículo 2, se prevé la existencia de 26 provincias (la ciudad de Kinsasa y 25 provincias), entrando en vigor esta división provincial 36 meses después del establecimiento efectivo de las instituciones previstas por la constitución de 2005 (artículo 226). Sin embargo esta reestructuración se ha aplazado varias veces,[1]​ lo que llevó a ...

 

交换周深的单曲收录于专辑《乌鸦小姐与蜥蜴先生 影视原声带》发行日期2021年4月26日 (2021-04-26)格式数字发行类型流行时长4:14作曲 Daryl K王凯玉 秋小天 作词 王韵韵 大媛 周深单曲年表 灯火里的中国(2021年) 交换 (2021年) 悬崖之上(2021年) 周深影视歌曲年表 小舍得(2021年) 交换(2021年) 悬崖之上(2021年) 《交换》是中国大陆男歌手周深为电视剧《乌鸦小姐与蜥蜴

Cet article est une ébauche concernant la médecine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir DPC. Schéma de l'opération La duodéno-pancréatectomie céphalique (DPC), ou duodénopancréatectomie céphalique, ou DPC, ou opération de Whipple, est réalisée dans le traitement chirurgical curatif d'une tumeur du bloc duodéno-pancréatique, comme une tumeur neuroendocri...

 

Fictional Elephant-led animal kingdom in West Africa This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Babar's Kingdom – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Babar's Kingdom'The Story of Babar' locationFlag of Babar's KingdomCreated by...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bomberman Ultra – news · newspapers · books · scholar · JSTOR (November 2008) (Learn how and when to remove this template message) 2009 video gameBomberman UltraDeveloper(s)Hudson SoftPublisher(s)Hudson SoftSeriesBombermanPlatform(s)PlayStation 3ReleaseNA: June...

2009 single by Sidewalk ProphetsThe Words I Would SaySingle by Sidewalk Prophetsfrom the album These Simple Truths ReleasedJune 19, 2009GenreCCMSongwriter(s)David Frey, Ben McDonald, Sam MizellSidewalk Prophets singles chronology The Words I Would Say (2009) You Can Have Me (2010) The Words I Would Say is a song from These Simple Truths, the first studio album from Sidewalk Prophets. Premise Sidewalk Prophets performing the song According to lead vocalist Dave Frey, God would bring the notion...

 

Приз Известий 1978 Загальні відомості Країна проведення: СРСР Час проведення: 16—22 грудня Кількість команд: 5 Міста проведення: Москва Призери Переможець: СРСР Друге місце:  Чехословаччина Третє місце:  Канада Статистика турніру Зіграно матчів: 10 Зак...

 

Battle of SandomierzPart of The DelugeOne of many skirmishes fought (Dębica) near SandomierzDateMarch 24–26, 1656LocationSandomierz, PolandResult Swedish victory, the King of Sweden escapes the battlefieldBelligerents Kingdom of Sweden Polish–Lithuanian CommonwealthCommanders and leaders Charles X Gustav Stefan CzarnieckiStrength 8.000 More than 16.000Casualties and losses Light 1,000[1] vteThe Deluge Ujście Danzig Sobota Żarnów 1st Kraków Nowy Dwór Mazowiecki Wojnicz Krosno...

FianitaLahirFianita Andriyati Rochmah26 Maret 1998 (umur 25)Ponorogo, Jawa Timur, IndonesiaPekerjaanPelawak tunggalTahun aktif2014—sekarang Fianita Andriyati Rochmah (lahir 26 Maret 1998) adalah seorang pelawak tunggal berkebangsaan Indonesia. Fianita yang merupakan alumni MAN 2 Ponorogo ini merupakan alumni kelas akselerasi. Fianita merupakan salah satu dari sekian banyak pelawak tunggal atau komika wanita di Indonesia yang mencuri perhatian masyarakat. Perempuan berhijab ini dik...

 

Guatemalan politician (born 1962) In this Spanish name, the first or paternal surname is Baldetti and the second or maternal family name is Elías. Roxana BaldettiOfficial portrait, 201213th Vice President of GuatemalaIn officeJanuary 14, 2012 – May 9, 2015[1]PresidentOtto Pérez MolinaPreceded byRafael EspadaSucceeded byAlejandro MaldonadoDeputy in the Congress of GuatemalaIn officeJanuary 14, 2008 – March 14, 2011Second General Secretary of the Patr...

 

National park in Madagascar Midongy du sud National ParkIUCN category II (national park)Location of Midongy du sud National Park in MadagascarLocationMidongy-Atsimo DistrictNearest cityFarafangana, BefotakaCoordinates23°30′S 46°55′E / 23.500°S 46.917°E / -23.500; 46.917Area1922 km²Established1997Governing bodyMadagascar National Parks Associationwww.parcs-madagascar.com/aire-prot%C3%A9g%C3%A9e/parc-national-midongy-du-sud Midongy du sud National Park...

Ini adalah nama Korea; marganya adalah Kim. Pada nama panggung/nama pena, nama belakangnya adalah Ha. Ha Jung-wooHa Jung-woo in 2018Nama asal하정우LahirKim Sung-hoon11 Maret 1978 (umur 45)Seoul,  Korea SelatanPendidikanUniversitas Chung-Ang (School of Performing Arts and Media - Theater)Pekerjaan Aktor Sutradara Penulis naskah Tahun aktif2002–presentAgenArtist Company (2017–2018)Orang tuaKim Yong-gun (bapak)Ko Kyung-ock (ibu)KeluargaCha Hyun-woo (brother)Nama ...

 

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis. Denny HermanIrkodiklat TNI ADMasa jabatan21 Januari 2022 – 27 Juni 2022PendahuluGabriel LemaPenggantiTjaturputra Gunadi GenahIrlog Itben ItjenadMasa jabatan9 April 2020 – 21 Januari 2022PendahuluTidak Ada,Jabatan baruPenggantiM. ZulkifliInspektur Komando Daerah Militer XII/TanjungpuraMasa jabatan2019 – 9 April 2020Pen...

 

Bodybuilding was an Asian Games event from 2002 to 2006. Bodybuilding is no longer an event at the Games because of the judging controversy during the 2006 Asian Games. Events Event 02 06 Years Men's 60 kg X X 2 Men's 65 kg X X 2 Men's 70 kg X X 2 Men's 75 kg X X 2 Men's 80 kg X X 2 Men's 85 kg X X 2 Men's 90 kg X X 2 Men's +90 kg X X 2 Total 8 8 Medal table RankNationGoldSilverBronzeTotal1 Singapore (SGP)32382 South Korea (KOR)30473...

О восточно-грузинском народе см. Иберия (царство). Территория расселения иберов Ибе́ры — народ, живший на территории современной Испании, примерно с 1-го тысячелетия до н. э. Содержание 1 Происхождение 2 История 3 Внешнее влияние 4 Галерея 5 См. также 6 Примечания 7 Лит...

 

Phosphate mineral ParavauxiteGeneralCategoryMineralFormula(repeating unit)Fe2+Al2(PO4)2(OH)2 · 8H2OIMA symbolPvx[1]Strunz classification8.DC.30Dana classification42.11.14.2Crystal systemTriclinicCrystal classPinacoidal H-M Symbol: 1Space groupP1Unit cell334.43IdentificationFormula mass477.89ColorLight brown, pale greenish white, gray-white, colorlessCleavagePerfect on {010}FractureConchoidalTenacityBrittleMohs scale hardness3LusterSub-Vitreous, resinous, waxy, pearlyStreakWhiteDiapha...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!