Share to: share facebook share twitter share wa share telegram print page

Dynamical theory of diffraction

Laue and Bragg geometries, top and bottom, as distinguished by the Dynamical theory of diffraction with the Bragg diffracted beam leaving the back or front surface of the crystal, respectively. (Ref.)

The dynamical theory of diffraction describes the interaction of waves with a regular lattice. The wave fields traditionally described are X-rays, neutrons or electrons and the regular lattice are atomic crystal structures or nanometer-scale multi-layers or self-arranged systems. In a wider sense, similar treatment is related to the interaction of light with optical band-gap materials or related wave problems in acoustics. The sections below deal with dynamical diffraction of X-rays.

Reflectivities for Laue and Bragg geometries, top and bottom, respectively, as evaluated by the dynamical theory of diffraction for the absorption-less case. The flat top of the peak in Bragg geometry is the so-called Darwin Plateau. (Ref.)

Principle

The dynamical theory of diffraction considers the wave field in the periodic potential of the crystal and takes into account all multiple scattering effects. Unlike the kinematic theory of diffraction which describes the approximate position of Bragg or Laue diffraction peaks in reciprocal space, dynamical theory corrects for refraction, shape and width of the peaks, extinction and interference effects. Graphical representations are described in dispersion surfaces around reciprocal lattice points which fulfill the boundary conditions at the crystal interface.

Outcomes

  • The crystal potential by itself leads to refraction and specular reflection of the waves at the interface to the crystal and delivers the refractive index off the Bragg reflection. It also corrects for refraction at the Bragg condition and combined Bragg and specular reflection in grazing incidence geometries.
  • A Bragg reflection is the splitting of the dispersion surface at the border of the Brillouin zone in reciprocal space. There is a gap between the dispersion surfaces in which no travelling waves are allowed. For a non-absorbing crystal, the reflection curve shows a range of total reflection, the so-called Darwin plateau. Regarding the quantum mechanical energy of the system, this leads to the band gap structure which is commonly well known for electrons.
  • Upon Laue diffraction, intensity is shuffled from the forward diffracted beam into the Bragg diffracted beam until extinction. The diffracted beam itself fulfills the Bragg condition and shuffles intensity back into the primary direction. This round-trip period is called the Pendellösung period.
  • The extinction length is related to the Pendellösung period. Even if a crystal is infinitely thick, only the crystal volume within the extinction length contributes considerably to the diffraction in Bragg geometry.
  • In Laue geometry, beam paths lie within the Borrmann triangle. Kato fringes are the intensity patterns due to Pendellösung effects at the exit surface of the crystal.
  • Anomalous absorption effects take place due to a standing wave patterns of two wave fields. Absorption is stronger if the standing wave has its anti-nodes on the lattice planes, i.e. where the absorbing atoms are, and weaker, if the anti-nodes are shifted between the planes. The standing wave shifts from one condition to the other on each side of the Darwin plateau which gives the latter an asymmetric shape.

Applications

See also

Further reading

  • J. Als-Nielsen, D. McMorrow: Elements of Modern X-ray physics. Wiley, 2001 (chapter 5: diffraction by perfect crystals).
  • André Authier: Dynamical theory of X-ray diffraction. IUCr monographs on crystallography, no. 11. Oxford University Press (1st edition 2001/ 2nd edition 2003). ISBN 0-19-852892-2.
  • R. W. James: The Optical Principles of the Diffraction of X-rays. Bell., 1948.
  • M. von Laue: Röntgenstrahlinterferenzen. Akademische Verlagsanstalt, 1960 (German).
  • Z. G. Pinsker: Dynamical Scattering of X-Rays in Crystals. Springer, 1978.
  • B. E. Warren: X-ray diffraction. Addison-Wesley, 1969 (chapter 14: perfect crystal theory).
  • W. H. Zachariasen: Theory of X-ray Diffraction in Crystals. Wiley, 1945.
  • Boris W. Batterman, Henderson Cole: Dynamical Diffraction of X Rays by Perfect Crystals. Reviews of Modern Physics, Vol. 36, No. 3, 681-717, July 1964.
  • H. Rauch, D. Petrascheck, “Grundlagen für ein Laue-Neutroneninterferometer Teil 1: Dynamische Beugung”, AIAU 74405b, Atominstitut der Österreichischen Universitäten, (1976)
  • H. Rauch, D. Petrascheck, “Dynamical neutron diffraction and its application” in “Neutron Diffraction”, H. Dachs, Editor. (1978), Springer-Verlag: Berlin Heidelberg New York. p. 303.
  • K.-D. Liss: "Strukturelle Charakterisierung und Optimierung der Beugungseigenschaften von Si(1-x)Ge(x) Gradientenkristallen, die aus der Gasphase gezogen wurden", Dissertation, Rheinisch Westfälische Technische Hochschule Aachen, (27 October 1994), urn:nbn:de:hbz:82-opus-2227


Read other information related to :Dynamical theory of diffraction/

Dynamical system Dynamical systems theory Dynamical theory of diffraction List of dynamical systems and differential equations topics Graph dynamical system Random dynamical system Dynamical time scale Combinatorics and dynamical systems Linear dynamical system Causal dynamical triangulation Projected dynamical system Dynamical heterogeneity Dynamical Theory of Crystal Lattices Dynamical parallax Dynamical mean-field theory Division on Dynamical Astronomy Hadamard's dynamical system Dynamical energy analysis Dynamic Bayesian network Celestial Mechanics and Dynamical Astronomy Measure-preservin…

g dynamical system Ergodic Theory and Dynamical Systems Dynamical billiards Dynamicism Dynamical friction Dynamical horizon Sequential dynamical system Dynamical lifetime Dynamical simulation Brouwer Award (Division on Dynamical Astronomy) High dynamic range Dynamic network analysis Dynamical decoupling DTA Dynamic Barycentric Dynamical Time Dynamic aperture (accelerator physics) Dynamical neuroscience Chōzetsu Dynamic! Dynamic linker Dynamic Planning Dynamic apnea Dynamic web page Base flow (random dynamical systems) Standard-dynamic-range video Dynamic braking Dynamical genetics Dynamic programming Absorbing set (random dynamical systems) Dynamic range Dynamic tonality KK Dynamic Dynamic positioning Dynamic DNS Dynamic mutation Dynamic program analysis Dynamic scaling Complex dynamic systems theory A Dynamical Theory of the Electromagnetic Field Dynamic topography Dynamic duo Aerospool WT9 Dynamic Dynamic mechanical analysis Dynamic problem (algorithms) Crisis (dynamical systems) Dynamic structure factor Conley's fundamental theorem of dynamical systems Dynamic Tension Dynamical pictures Dynamic loading Intel Dynamic Acceleration Dynamics High-dynamic-range rendering Dynamic rou

Kembali kehalaman sebelumnya