Dynamical dimensional reduction

Dynamical dimensional reduction or spontaneous dimensional reduction is the apparent reduction in the number of spacetime dimensions as a function of the distance scale, or conversely the energy scale, with which spacetime is probed. At least within the current level of experimental precision, our universe has three dimensions of space and one of time. However, the idea that the number of dimensions may increase at extremely small length scales was first proposed more than a century ago,[1] and is now fairly commonplace in theoretical physics. Contrary to this, a number of recent results in quantum gravity suggest the opposite behavior, a dynamical reduction of the number of spacetime dimensions at small length scales.

Evidence for dimensional reduction

The phenomenon of dimensional reduction has now been reported in a number of different approaches to quantum gravity. String theory,[2] causal dynamical triangulations,[3] renormalization group approaches,[4] noncommutative geometry,[5] loop quantum gravity[6] and Horava-Lifshitz gravity[7] all find that the dimensionality of spacetime appears to decrease from approximately 4 on large distance scales to approximately 2 on small distance scales.

The evidence for dimensional reduction has come mainly, although not exclusively, from calculations of the spectral dimension. The spectral dimension is a measure of the effective dimension of a manifold at different resolution scales. Early numerical simulations within the causal dynamical triangulation (CDT) approach to quantum gravity found a spectral dimension of 4.02 ± 0.10 at large distances and 1.80 ± 0.25 at small distances. This result created significant interest in dimensional reduction within the quantum gravity community. A more recent study of the same point in the parameter space of CDT found consistent results, namely 4.05 ± 0.17 at large distances and 1.97 ± 0.27 at small distances.[8]

Currently, there is no consensus on the correct theoretical explanation for the mechanism of dimensional reduction.

Possible explanations

The ubiquity and consistency of dimensional reduction in quantum gravity has driven the search for a theoretical understanding of this phenomenon. Currently, there exist few proposed explanations for the observation of dimensional reduction.

One proposal is that of scale invariance. There is growing evidence that gravity may be nonperturbatively renormalizable as described by the asymptotic safety program, which requires the existence of a non-Gaussian fixed point at high energies towards which the couplings defining the theory flow.[4] At such a fixed point gravity must be scale invariant, and hence Newton's constant must be dimensionless. Only in 2-dimensional spacetime is Newton's constant dimensionless, and so in this scenario going to higher energies and hence flowing towards the fixed point should correspond to the dimensionality of spacetime reducing to the value 2. This explanation is not entirely satisfying as it does not explain why such a fixed point should exist in the first place.[9]

A second possible explanation for dimensional reduction is that of asymptotic silence. General relativity exhibits so-called asymptotic silence in the vicinity of a spacelike singularity, which is the narrowing or focusing of light cones close to the Planck scale leading to a causal decoupling of nearby spacetime points. In this scenario, each point has a preferred spatial direction, and geodesics see a reduced (1 + 1)-dimensional spacetime.[10]

Dimensional reduction implies a deformation or violation of Lorentz invariance and typically predicts an energy dependent speed of light.[11] Given such radical consequences, an alternative proposal is that dimensional reduction should not be taken literally, but should instead be viewed as a hint of new Planck scale physics.[12][13]

References

  1. ^ Nordstrom, Von Gunnar (1914). "Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen". Physikalische Zeitschrift. 15: 504.
  2. ^ Atick, Joseph J.; Witten, Edward (1988). "The Hagedorn transition and the number of degrees of freedom of string theory". Nuclear Physics B. 310 (2). Elsevier BV: 291–334. Bibcode:1988NuPhB.310..291A. doi:10.1016/0550-3213(88)90151-4. ISSN 0550-3213.
  3. ^ Ambjørn, J.; Jurkiewicz, J.; Loll, R. (2005-10-20). "The Spectral Dimension of the Universe is Scale Dependent". Physical Review Letters. 95 (17): 171301. arXiv:hep-th/0505113. Bibcode:2005PhRvL..95q1301A. doi:10.1103/physrevlett.95.171301. ISSN 0031-9007. PMID 16383815. S2CID 15496735.
  4. ^ a b Lauscher, Oliver; Reuter, Martin (2005-10-18). "Fractal spacetime structure in asymptotically safe gravity". Journal of High Energy Physics. 2005 (10): 050. arXiv:hep-th/0508202. Bibcode:2005JHEP...10..050L. doi:10.1088/1126-6708/2005/10/050. ISSN 1029-8479. S2CID 14396108.
  5. ^ Benedetti, Dario (2009-03-19). "Fractal Properties of Quantum Spacetime". Physical Review Letters. 102 (11): 111303. arXiv:0811.1396. Bibcode:2009PhRvL.102k1303B. doi:10.1103/physrevlett.102.111303. ISSN 0031-9007. PMID 19392189. S2CID 15302009.
  6. ^ Modesto, Leonardo (2009-11-24). "Fractal spacetime from the area spectrum". Classical and Quantum Gravity. 26 (24): 242002. arXiv:0812.2214. doi:10.1088/0264-9381/26/24/242002. ISSN 0264-9381. S2CID 118826379.
  7. ^ Hořava, Petr (2009-04-20). "Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point". Physical Review Letters. 102 (16): 161301. arXiv:0902.3657. Bibcode:2009PhRvL.102p1301H. doi:10.1103/physrevlett.102.161301. ISSN 0031-9007. PMID 19518693. S2CID 8799552.
  8. ^ Coumbe, D. N.; Jurkiewicz, J. (2015). "Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations". Journal of High Energy Physics. 2015 (3). Springer Science and Business Media LLC: 151. arXiv:1411.7712. doi:10.1007/jhep03(2015)151. ISSN 1029-8479.
  9. ^ Carlip, S.; Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity? arXiv:0909.3329.
  10. ^ Carlip, S (2017-09-04). "Dimension and dimensional reduction in quantum gravity". Classical and Quantum Gravity. 34 (19). IOP Publishing: 193001. arXiv:1705.05417. Bibcode:2017CQGra..34s3001C. doi:10.1088/1361-6382/aa8535. ISSN 0264-9381. S2CID 55828101.
  11. ^ Sotiriou, Thomas P.; Visser, Matt; Weinfurtner, Silke (2011-11-08). "From dispersion relations to spectral dimension—and back again". Physical Review D. 84 (10). American Physical Society (APS): 104018. arXiv:1105.6098. Bibcode:2011PhRvD..84j4018S. doi:10.1103/physrevd.84.104018. ISSN 1550-7998. S2CID 33335380.
  12. ^ Coumbe, D. N. (2015-06-12). "Hypothesis on the nature of time". Physical Review D. 91 (12). American Physical Society (APS): 124040. arXiv:1502.04320. Bibcode:2015PhRvD..91l4040C. doi:10.1103/physrevd.91.124040. ISSN 1550-7998. S2CID 117709225.
  13. ^ Coumbe, D. N. (2017-08-20). "Quantum gravity without vacuum dispersion". International Journal of Modern Physics D. 26 (10). World Scientific Pub Co Pte Lt: 1750119. arXiv:1512.02519. Bibcode:2017IJMPD..2650119C. doi:10.1142/s021827181750119x. ISSN 0218-2718. S2CID 55120379.

Read other articles:

Джон Хартфилд. «Война и трупы — последняя надежда богатых», 1932 «Война и трупы — последняя надежда богатых»[1][2], также «Гиена капитализма»[3] (нем. Krieg und Leichen — Die letzte Hoffnung der Reichen) — антивоенный фотомонтаж немецкого художника, фотографа, плакатиста и декорато...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) غرينليف فيسك   معلومات شخصية الميلاد 19 مايو 1807  ألباني، نيويورك  الوفاة 26 يناير 1888 (80 سنة)   براونوود  مواطنة الولايات المتحدة  الحياة العملية ا

 

American film by Ryan Lacen All the World Is SleepingTheatrical release posterDirected byRyan LacenWritten byRyan LacenProduced by Ian Simon Ryan Lacen Sonja Mereu Anthony Baldino Starring Melissa Barrera Kristen Gutoskie Lisandra Tena Luis Bordonada Jackie Cruz Jorge Garcia CinematographyMichael GarciaEdited byEric SeoMusic byEmily GreeneProductioncompanies Bold Futures Normal Films Distributed byGravitas VenturesRelease dates September 16, 2021 (2021-09-16) (NYLFF) March&...

37th United States presidential inauguration First presidential inauguration of Franklin D. RooseveltDateMarch 4, 1933; 90 years ago (1933-03-04)LocationUnited States Capitol,Washington, D.C.Organized byJoint Congressional Committee on Inaugural CeremoniesParticipantsFranklin D. Roosevelt32nd president of the United States— Assuming officeCharles Evans HughesChief Justice of the United States— Administering oathJohn Nance Garner32nd vice president of the United States—...

 

Ostbayerische Technische Hochschule Amberg-Weiden Motto „fördern, führen, inspirieren“ Gründung 1994 Trägerschaft staatlich Ort Amberg und Weiden Bundesland Bayern Bayern Land Deutschland Deutschland Präsident Clemens Bulitta Studierende 4.100 Stand: WS 2023/24 Mitarbeiter 375 davon Professoren 95 Website www.oth-aw.de Lagepläne der beiden Standorte: Amberg (links) und Weiden (rechts) Die Ostbayerische Technische Hochschule Amberg-Weiden (OTH-AW) ist eine staatliche Fachho...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Arizona WildcatsUniversitasUniversity of ArizonaKonferensiPac-12 ConferenceNCAADivision I/FBSDirektur olahragaDave HeekeLokasiTucson, ArizonaTim v...

Puncak kekuasaan Kekaisaran Ghana. Kekaisaran Ghana atau Kekaisaran Wagadou (750-1076) adalah kekaisaran yang terletak di Mauritania tenggara, Mali barat, dan Senegal timur. Kekaisaran ini merupakan kekaisaran pertama yang bangkit di Afrika., dimulai pertama kali pada abad ke-8. Referensi Mauny, R. (1971), “The Western Sudan” in Shinnie: 66-87. Monteil, Charles (1953). La Légende du Ouagadou et l'Origine des Soninké. Mélanges Ethnologiques (dalam bahasa Prancis). Dakar: Bulletin de l...

 

2019 Philippine action drama series SandugoTitle cardAlso known asFists of FateGenre Drama Action Crime Created byReggie AmigoWritten by Camille Anne dela Cruz Wilbert Christian Tan Directed by Darnel Joy Villaflor Ram Tolentino Starring Ejay Falcon Aljur Abrenica Elisse Joson Jessy Mendiola Cherry Pie Picache Vina Morales Gardo Versoza Ariel Rivera Theme music composerNonong BuencaminoJose BartolomeGary ValencianoOpening themeNatutulog Ba ang Diyos by Sam MangubatCountry of originPhilippines...

 

Laetitia Casta (2020) Laetitia Maria Laure Casta (* 11. Mai 1978 in Pont-Audemer) ist eine französische Schauspielerin sowie ein international bekanntes Model. Inhaltsverzeichnis 1 Leben und Karriere 2 Privatleben 3 Filmografie 4 Musikvideos 5 Literatur 6 Weblinks 7 Einzelnachweise Leben und Karriere Casta ist die Tochter von Dominique Casta und Line Blin; sie hat einen älteren Bruder Jean-Baptiste und eine jüngere Schwester Marie-Ange. Casta verbrachte ihre Kindheit in der Normandie, der ...

2021 mountaineering documentary film 14 Peaks: Nothing Is ImpossibleDirected byTorquil JonesWritten byGabriel Clarke Torquil JonesProduced byJohn McKenna Barry Smith Drew Masters Catherine Quantschnigg Mark WebberStarringNirmal PurjaEdited byIan GrechMusic byNainita DesaiProductioncompanyNoah Media GroupDistributed byNetflixRelease date 29 November 2021 (2021-11-29) Running time101 minutesLanguagesNepali English 14 Peaks: Nothing Is Impossible is a 2021 documentary film directe...

 

Indian actress Nivedita Joshi SarafNivedita Joshi Saraf in 2015BornNivedita Joshi (1963-04-11) 11 April 1963 (age 60)NationalityIndianOccupationActressYears active1977–presentSpouse Ashok Saraf ​(m. 1990)​Children1 Nivedita Joshi Saraf (née Joshi; born 11 April 1963) is an Indian film, television and theatre actress. Joshi made her film debut as a child in the 1977 Hindi film Apnapan. and started her career in lead roles as a teen-adult in 1984, when ...

 

2014 single by T.I. featuring Iggy AzaleaNo MediocreSingle by T.I. featuring Iggy Azaleafrom the album Paperwork ReleasedJune 17, 2014 (2014-06-17)Genre Hip hop Length3:21Label Grand Hustle Columbia Records Songwriter(s) Clifford Harris, Jr. Amethyst Kelly Producer(s)DJ MustardT.I. singles chronology About the Money (2014) No Mediocre (2014) This Girl (2014) Iggy Azalea singles chronology Problem(2014) No Mediocre(2014) Black Widow(2014) Music videoNo Mediocre on YouTub...

Finnish politician Jenna SimulaSimula in 2023.Member of the Finnish Parliamentfor OuluIncumbentAssumed office 17 April 2019 Personal detailsBorn (1989-09-13) 13 September 1989 (age 34)Oulu, North Ostrobothnia, FinlandPolitical partyFinns Party Jenna Simula (born 13 September 1989 in Oulu) is a Finnish politician currently serving in the Parliament of Finland for the Finns Party at the Oulu constituency.[1] References ^ Eduskunta profile vteEduskunta members 2023–2027Nationa...

 

The following is an alphabetical list of terms and jargon used in relation to Gaelic games. See also list of Irish county nicknames, and these are very interesting. Contents A B C D E F G H I J K L M N O P Q R S T U V W X Y Z References Abbreviations Competitions usually have long names, so an abbreviation system is used: Level Sport Tournament type M: Minor U-20 or U20: Under-20 U-21 or U21: Under-21 J: Junior I: Intermediate S: Senior N: National C: Camogie F: Gaelic football H: Hurling LF:...

 

British algorithmic trading company XTX MarketsHeadquarters in LondonIndustryElectronic liquidity providerFounded30 January 2015[1][2][3][4]FounderAlex Gerko[1][2][3][4]HeadquartersLondon[4]Productsequities/foreign exchange/commodities/fixed income/derivatives [4]Number of employees190WebsiteXTX Markets XTX Markets is an algorithmic trading company. It was founded in January 2015 by Alexander Gerko, who is current...

Cet article est une ébauche concernant l’Armée française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Groupement de soutien de la base de défense de Belfort Insigne de la BdD BFT Création 1er janvier 2011 Pays France Allégeance Armée française Branche Service du commissariat des armées Type Organisme interarmées Rôle Administration générale et soutiens communs Fait partie de Service du commissa...

 

Radio station in Grayson, KentuckyWGOHGrayson, KentuckyBroadcast areaHuntington-AshlandFrequency1370 kHzBrandingGo Radio Kentucky CountryProgrammingFormatClassic countryAffiliationsCBS News RadioKentucky News Network Sports Radio NetworkOwnershipOwnerCarter County Broadcasting Co., Inc.Sister stationsWUGOHistoryFirst air dateJune 1, 1959Call sign meaningW Grayson - Olive HillTechnical informationFacility ID9210ClassDPower5,000 watts day21 watts nightTransmitter coordinates38°19′44″N 82°...

 

Television, radio and media outlets in Toronto, Canada. A production control room in Toronto's Rogers Studios for City and Omni Television. Both are subsidiaries of Rogers Media. The media in Toronto encompasses a wide range of television and radio stations, as well as digital and print media outlets. These media platforms either service the entire city or are cater to a specific neighbourhood or community within Toronto. Additionally, several media outlets from Toronto extend their services ...

Untuk satuan wilayah di atasnya, lihat Kabupaten Jombang. Untuk kegunaan lain, lihat Jombang (disambiguasi). JombangKecamatanPeta lokasi Kecamatan JombangNegara IndonesiaProvinsiJawa TimurKabupatenJombangPemerintahan • CamatDrs. Heri PrayitnoPopulasi (2021)[1] • Total142.004 jiwa • Kepadatan3.525/km2 (9,130/sq mi)Kode pos61411 - 61419Kode Kemendagri35.17.09 Kode BPS3517130 Luas40,29 km²Desa/kelurahan16 desa 4 kelurahan Jombang adalah...

 

Former design used on United States coinage Draped Bust dollar obverse Draped Bust was the name given to a design of United States coins. It appeared on much of the regular-issue copper and silver United States coinage, 1796–1807. It was designed by engraver Robert Scot. Basic design In 1796, Congress responded to the almost universal dissatisfaction of the first coins (Flowing Hair dollar) and decreed a new design. As was the custom of the time, all denominations bore the same design or, i...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!