Drug delivery

A nasal spray bottle being demonstrated.

Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect.[1][2] Principles related to drug preparation, route of administration, site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient convenience and compliance.[3][4] Drug delivery is aimed at altering a drug's pharmacokinetics and specificity by formulating it with different excipients, drug carriers, and medical devices.[3][5][6] There is additional emphasis on increasing the bioavailability and duration of action of a drug to improve therapeutic outcomes.[7] Some research has also been focused on improving safety for the person administering the medication. For example, several types of microneedle patches have been developed for administering vaccines and other medications to reduce the risk of needlestick injury.[4][8]

Drug delivery is a concept heavily integrated with dosage form and route of administration, the latter sometimes being considered part of the definition.[9] While route of administration is often used interchangeably with drug delivery, the two are separate concepts. Route of administration refers to the path a drug takes to enter the body,[10] whereas drug delivery also encompasses the engineering of delivery systems and can include different dosage forms and devices used to deliver a drug through the same route.[11] Common routes of administration include oral, parenteral (injected), sublingual, topical, transdermal, nasal, ocular, rectal, and vaginal, however, drug delivery is not limited to these routes and there may be several ways to deliver medications through other routes.[12]

Since the approval of the first controlled-release formulation in the 1950s, research into new delivery systems has been progressing, as opposed to new drug development which has been declining.[13][14][15] Several factors may be contributing to this shift in focus. One of the driving factors is the high cost of developing new drugs. A 2013 review found the cost of developing a delivery system was only 10% of the cost of developing a new pharmaceutical.[16] A more recent study found the median cost of bringing a new drug to market was $985 million in 2020, but did not look at the cost of developing drug delivery systems.[17] Other factors that have potentially influenced the increase in drug delivery system development may include the increasing prevalence of both chronic and infectious diseases,[15][18] as well as a general increased understanding of the pharmacology, pharmacokinetics, and pharmacodynamics of many drugs.[3]

Current efforts

Current efforts in drug delivery are vast and include topics such as controlled-release formulations, targeted delivery, nanomedicine, drug carriers, 3D printing, and the delivery of biologic drugs.[19][20]

The relation between nanomaterial and drug delivery

Nanotechnology is a broad field of research and development that deals with the manipulation of matter at the atomic or subatomic level. It is used in fields such as medicine, energy, aerospace engineering, and more. One of the applications of nanotechnology in drug delivery. This is a process by which nanoparticles are used to carry and deliver drugs to a specific area in the body. There are several advantages of using nanotechnology for drug delivery, including precise targeting of specific cells, increased drug potency, and lowered toxicity to the cells that are targeted. Nanoparticles can also carry vaccines to cells that might be hard to reach with traditional delivery methods. However, there are some concerns with the use of nanoparticles for drug delivery. Some studies have shown that nanoparticles may contribute to the development of tumors in other parts of the body. There is also growing concern that nanoparticles may have harmful effects on the environment. Despite these potential drawbacks, the use of nanotechnology in drug delivery is still a promising area for future research.[21]

Targeted delivery

Targeted drug delivery is the delivery of a drug to its target site without having an effect on other tissues.[22] Interest in targeted drug delivery has grown drastically due to its potential implications in the treatment of cancers and other chronic diseases.[23][24][25] In order to achieve efficient targeted delivery, the designed system must avoid the host's defense mechanisms and circulate to its intended site of action.[26] A number of drug carriers have been studied to effectively target specific tissues, including liposomes, nanogels, and other nanotechnologies.[20][23][27]

Controlled-release formulations

Controlled or modified-release formulations alter the rate and timing at which a drug is liberated, in order to produce adequate or sustained drug concentrations.[28] The first controlled-release (CR) formulation that was developed was Dexedrine in the 1950s.[13] This period of time saw more drugs being formulated as CR, as well as the introduction of transdermal patches to allow drugs to slowly absorb through the skin.[29] Since then, countless other CR products have been developed to account for the physiochemical properties of different drugs, such as depot injections for antipsychotics and sex hormones that require dosing once every few months.[30][31]

Since the late 1990s, most of the research around CR formulations has been focused on implementing nanoparticles to decrease the rate of drug clearance.[13][29]

Modulated drug release and zero-order drug release

Many scientists worked to create oral formulations that could maintain a constant drug level because of the ability of drug release at a zero-order rate.blood's concentration. However, a few physiological restrictions made it challenging to create such oral formulations. First, because the lower parts of the intestine have a decreased capacity for absorption, the medication absorption typically declines as an oral formulation moves from the stomach to the intestine. The decreased drug amount released from the formulation over time frequently made this condition worse. Phenylpropanolamine HCl release from was the only instance of sustaining consistent blood concentration for roughly 16 hours.[32]

Delivery of biologic drugs

Pharmaceutical preparations containing peptides, proteins, antibodies, genes, or other biologic components often face absorption issues due to their large sizes or electrostatic charges, and may be susceptible to enzymatic degradation once they have entered the body.[3][11] For these reasons, recent efforts in drug delivery have been focused on methods to avoid these issues through the use of liposomes, nanoparticles, fusion proteins, protein-cage nanoparticles, exploiting routes for the delivery of biologicals that toxins use and many others.[3][33][34][35][36] Intracellular delivery of macromolecules by chemical carriers is most advanced for RNA, as known from RNA-based COVID-19 vaccines, while proteins have also been delivered into cells in vivo and DNA is routinely delivered in vitro.[37][38][39] Among the various routes of administration the oral route is most favored by patients. For most biologic drugs, however, oral bioavailability is too low to reach a therapeutic level. Advanced delivery systems such as formulations containing permeation enhancers or enzyme inhibitors, lipid-based nanocarriers and microneedles will likely enhance oral bioavailability of these drugs sufficiently.[40][41]

Nanoparticle drug delivery

Drug delivery systems have been around for many years, but there are a few recent applications of drug delivery that warrant 1. Drug delivery to the brain: Many drugs can be harmful when administered systemically; the brain is very sensitive to medications and can easily cause damage if a drug is administered directly into the bloodstream. As new drug formulations are being developed for brain diseases, including Alzheimer's disease and Parkinson's disease, researchers are working on ways to deliver drugs into the brain that do not cause damage to healthy tissue. For example, scientists have developed nanoparticles that can cross the protective blood-brain barrier and deliver drugs directly to the brain.[42][43]

See also

References

  1. ^ "Drug Delivery Systems (definition)". www.reference.md. Retrieved 2021-04-20.
  2. ^ Rayaprolu, Bindhu Madhavi; Strawser, Jonathan J.; Anyarambhatla, Gopal (2018-10-03). "Excipients in parenteral formulations: selection considerations and effective utilization with small molecules and biologics". Drug Development and Industrial Pharmacy. 44 (10): 1565–1571. doi:10.1080/03639045.2018.1483392. ISSN 0363-9045. PMID 29863908. S2CID 46934375.
  3. ^ a b c d e Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K (2012). "Drug delivery systems: An updated review". International Journal of Pharmaceutical Investigation. 2 (1): 2–11. doi:10.4103/2230-973X.96920. ISSN 2230-973X. PMC 3465154. PMID 23071954.
  4. ^ a b Li, Junwei; Zeng, Mingtao; Shan, Hu; Tong, Chunyi (2017-08-23). "Microneedle Patches as Drug and Vaccine Delivery Platform". Current Medicinal Chemistry. 24 (22): 2413–2422. doi:10.2174/0929867324666170526124053. PMID 28552053.
  5. ^ Tekade, Rakesh K., ed. (30 November 2018). Basic fundamentals of drug delivery. Academic Press. ISBN 978-0-12-817910-9. OCLC 1078149382.
  6. ^ Allen, T. M. (2004-03-19). "Drug Delivery Systems: Entering the Mainstream". Science. 303 (5665): 1818–1822. Bibcode:2004Sci...303.1818A. doi:10.1126/science.1095833. ISSN 0036-8075. PMID 15031496. S2CID 39013016.
  7. ^ Singh, Akhand Pratap; Biswas, Arpan; Shukla, Aparna; Maiti, Pralay (2019-08-30). "Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles". Signal Transduction and Targeted Therapy. 4 (1): 33. doi:10.1038/s41392-019-0068-3. ISSN 2059-3635. PMC 6799838. PMID 31637012.
  8. ^ Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R. (November 2012). "Microneedles for drug and vaccine delivery". Advanced Drug Delivery Reviews. 64 (14): 1547–1568. doi:10.1016/j.addr.2012.04.005. PMC 3419303. PMID 22575858.
  9. ^ Nahler, Gerhard (2017). "D". Dictionary of Pharmaceutical Medicine. Springer, Cham. p. 96. doi:10.1007/978-3-319-50669-2_4. ISBN 978-3-319-50669-2.
  10. ^ "route of administration - definition of route of administration in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia". 2011-06-12. Archived from the original on 2011-06-12. Retrieved 2021-04-20.
  11. ^ a b Jain, Kewal K. (2020), Jain, Kewal K. (ed.), "An Overview of Drug Delivery Systems", Drug Delivery Systems, Methods in Molecular Biology, vol. 2059, New York, NY: Springer New York, pp. 1–54, doi:10.1007/978-1-4939-9798-5_1, ISBN 978-1-4939-9797-8, PMID 31435914, S2CID 201275047, retrieved 2021-04-20
  12. ^ "COMMON ROUTES OF DRUG ADMINISTRATION". media.lanecc.edu. Archived from the original on 2021-10-15. Retrieved 2021-04-20.
  13. ^ a b c Park, Kinam (September 2014). "Controlled drug delivery systems: Past forward and future back". Journal of Controlled Release. 190: 3–8. doi:10.1016/j.jconrel.2014.03.054. PMC 4142099. PMID 24794901.
  14. ^ Scannell, Jack W.; Blanckley, Alex; Boldon, Helen; Warrington, Brian (March 2012). "Diagnosing the decline in pharmaceutical R&D efficiency". Nature Reviews Drug Discovery. 11 (3): 191–200. doi:10.1038/nrd3681. ISSN 1474-1776. PMID 22378269. S2CID 3344476.
  15. ^ a b ltd, Research and Markets. "Pharmaceutical Drug Delivery Market Forecast to 2027 - COVID-19 Impact and Global Analysis by Route of Administration; Application; End User, and Geography". www.researchandmarkets.com. Retrieved 2021-04-24.
  16. ^ He, Huining; Liang, Qiuling; Shin, Meong Cheol; Lee, Kyuri; Gong, Junbo; Ye, Junxiao; Liu, Quan; Wang, Jingkang; Yang, Victor (2013-12-01). "Significance and strategies in developing delivery systems for bio-macromolecular drugs". Frontiers of Chemical Science and Engineering. 7 (4): 496–507. doi:10.1007/s11705-013-1362-1. ISSN 2095-0187. S2CID 97347142.
  17. ^ Wouters, Olivier J.; McKee, Martin; Luyten, Jeroen (2020-03-03). "Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018". JAMA. 323 (9): 844–853. doi:10.1001/jama.2020.1166. ISSN 0098-7484. PMC 7054832. PMID 32125404.
  18. ^ PricewaterhouseCoopers. "Chronic diseases and conditions are on the rise". PwC. Retrieved 2021-04-25.
  19. ^ Li, Chong; Wang, Jiancheng; Wang, Yiguang; Gao, Huile; Wei, Gang; Huang, Yongzhuo; Yu, Haijun; Gan, Yong; Wang, Yongjun; Mei, Lin; Chen, Huabing; Hu, Haiyan; Zhang, Zhiping; Jin, Yiguang (2019-11-01). "Recent progress in drug delivery". Acta Pharmaceutica Sinica B. 9 (6): 1145–1162. doi:10.1016/j.apsb.2019.08.003. ISSN 2211-3835. PMC 6900554. PMID 31867161.
  20. ^ a b "Drug Delivery Systems". www.nibib.nih.gov. Retrieved 2021-04-25.
  21. ^ J. Wang, Y. Li, G. Nie, Multifunctional biomolecule nanostructures for cancer therapy, Nat. Rev. Mat. 6 (2021) 766–783
  22. ^ Tekade, Rakesh K.; Maheshwari, Rahul; Soni, Namrata; Tekade, Muktika; Chougule, Mahavir B. (2017-01-01). "Nanotechnology for the Development of Nanomedicine". Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes: 3–61. doi:10.1016/B978-0-12-809717-5.00001-4. ISBN 9780128097175.
  23. ^ a b Madhusudana Rao, Kummara; Krishna Rao, Kummari S.V.; Ha, Chang-Sik (2018-01-01). "Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted drug delivery and gene delivery in cancer cells". Design of Nanostructures for Theranostics Applications: 243–275. doi:10.1016/B978-0-12-813669-0.00006-3. ISBN 9780128136690.
  24. ^ Patra, Jayanta Kumar; Das, Gitishree; Fraceto, Leonardo Fernandes; Campos, Estefania Vangelie Ramos; Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Diaz-Torres, Luis Armando; Grillo, Renato; Swamy, Mallappa Kumara; Sharma, Shivesh; Habtemariam, Solomon (December 2018). "Nano based drug delivery systems: recent developments and future prospects". Journal of Nanobiotechnology. 16 (1): 71. doi:10.1186/s12951-018-0392-8. ISSN 1477-3155. PMC 6145203. PMID 30231877.
  25. ^ Amidon, Seth; Brown, Jack E.; Dave, Vivek S. (August 2015). "Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches". AAPS PharmSciTech. 16 (4): 731–741. doi:10.1208/s12249-015-0350-9. ISSN 1530-9932. PMC 4508299. PMID 26070545.
  26. ^ Bertrand, Nicolas; Leroux, Jean-Christophe (2012-07-20). "The journey of a drug-carrier in the body: An anatomo-physiological perspective". Journal of Controlled Release. 161 (2): 152–163. doi:10.1016/j.jconrel.2011.09.098. ISSN 0168-3659. PMID 22001607.
  27. ^ Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary (2016). "Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications". Medical Principles and Practice. 25 (2): 60–72. doi:10.1159/000445116. ISSN 1011-7571. PMC 5588529. PMID 26938856.
  28. ^ Perrie, Yvonne (2012). Pharmaceutics- Drug Delivery and Targeting. FASTtrack. pp. 1–19. ISBN 978-0-85711-059-6.
  29. ^ a b Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam (December 2015). "Controlled Drug Delivery: Historical perspective for the next generation". Journal of Controlled Release. 219: 2–7. doi:10.1016/j.jconrel.2015.10.005. PMC 4656096. PMID 26456749.
  30. ^ Lindenmayer, Jean-Pierre; Glick, Ira D.; Talreja, Hiteshkumar; Underriner, Michael (July 2020). "Persistent Barriers to the Use of Long-Acting Injectable Antipsychotics for the Treatment of Schizophrenia". Journal of Clinical Psychopharmacology. 40 (4): 346–349. doi:10.1097/JCP.0000000000001225. ISSN 1533-712X. PMID 32639287. S2CID 220412843.
  31. ^ Mishell, D. R. (May 1996). "Pharmacokinetics of depot medroxyprogesterone acetate contraception". The Journal of Reproductive Medicine. 41 (5 Suppl): 381–390. ISSN 0024-7758. PMID 8725700.
  32. ^ J.-C. Liu, M. Farber, Y.W. Chien, Comparative release of phenylpropanolamine HCl from long-acting appetite suppressant products: Acutrim vs, Dexatrim. Drug Develop. and Indus. Pharm. 10 (1984) 1639–1661.
  33. ^ Strohl, William R. (January 2018). "Current progress in innovative engineered antibodies". Protein & Cell. 9 (1): 86–120. doi:10.1007/s13238-017-0457-8. ISSN 1674-800X. PMC 5777977. PMID 28822103.
  34. ^ Marschall, Andrea L J; Frenzel, André; Schirrmann, Thomas; Schüngel, Manuela; Dübel, Stefan (2011). "Targeting antibodies to the cytoplasm". mAbs. 3 (1): 3–16. doi:10.4161/mabs.3.1.14110. ISSN 1942-0862. PMC 3038006. PMID 21099369.
  35. ^ Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, Yun E, Sandoval RM, Molitoris BA, Zollman A, Douglas T, Hato, T (September 2019). "The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration". Journal of Clinical Investigation. 129 (9): 3941–3951. doi:10.1172/JCI127511. PMC 6715384. PMID 31424427.
  36. ^ Ruschig M, Marschall Andrea LJ (2023). "Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context". BioDrugs. 37 (2): 181–203. doi:10.1007/s40259-023-00580-y. PMC 9893211. PMID 36729328.
  37. ^ Zuris, John A; Thompson, DB; Shu, Y; Guilinger, JP; Bessen, JL; Hu, JH; Maeder, ML; Joung, JK; Chen, ZY; Liu, DR (Jan 2015). "Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo". Nat Biotechnol. 33 (1): 73–80. doi:10.1038/nbt.3081. PMC 4289409. PMID 25357182.
  38. ^ Schoenmaker, Linde; Witzigmann, D; Kulkarni, JA; Verbeke, R; Kersten, G; Jiskoot, W; Crommelin, DJA (April 2021). "mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability". Int J Pharm. 601 (120586): 120586. doi:10.1016/j.ijpharm.2021.120586. PMC 8032477. PMID 33839230.
  39. ^ Marschall, Andrea L J (October 2021). "Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy". BioDrugs. 25 (6): 643–671. doi:10.1007/s40259-021-00500-y. PMC 8548996. PMID 34705260.
  40. ^ Haddadzadegan, S; Dorkoosh, F; Bernkop-Schnürch, A (2022). "Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers". Adv Drug Deliv Rev. 182: 114097. doi:10.1016/j.addr.2021.114097. PMID 34999121. S2CID 245820799.
  41. ^ Bordbar-Khiabani A, Gasik M (2022). "Smart hydrogels for advanced drug delivery systems". International Journal of Molecular Sciences. 23 (7): 3665. doi:10.3390/ijms23073665. PMC 8998863. PMID 35409025.
  42. ^ D.S.W. Benoit, C.T. Overby, K.R. Sims Jr., M.A. Ackun-Farmmer, Drug delivery systems, in: W.R. Wagner, S.E. Sakiyama-Elbert, G. Zhang, M.J. Yaszemski (Eds.), Biomaterials Science (Fourth Edition), Academic Press, 2020, pp. 1237–1266 (Ch. 1232.1235.1212).
  43. ^ Teleanu, Daniel; Chircov, Cristina; Grumezescu, Alexandru; Volceanov, Adrian; Teleanu, Raluca (2018-12-11). "Blood-Brain Delivery Methods Using Nanotechnology". Pharmaceutics. 10 (4): 269. doi:10.3390/pharmaceutics10040269. ISSN 1999-4923. PMC 6321434. PMID 30544966.

Read other articles:

العملية فرس النبيOperation Praying Mantis جزء من الحرب الإيرانية العراقية الفرقاطة الإيرانية سهند تتعرض لهجوم من طائرة تابعة للجناح 11 لحاملة طائرات البحرية الأمريكية بعد ارتطام الفرقاطة الصواريخ الموجهة الأمريكية USS صمويل روبرتس بلغم إيراني. معلومات عامة التاريخ 18 أبريل 1988 المو...

 

2023 American mystery thriller television series The Other Black GirlPromotional posterGenre Comedy drama Horror Mystery Thriller Satire Based onThe Other Black Girlby Zakiya Dalila HarrisDeveloped by Zakiya Dalila Harris Rashida Jones Starring Sinclair Daniel Ashleigh Murray Brittany Adebumola Hunter Parrish Bellamy Young Eric McCormack Music byEmmoLei SankofaCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes10ProductionExecutive producers Rashida Jones Adam...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2023) 23°33′01″S 46°38′02″W / 23.55028°S 46.63389°W / -23.55028; -46.63389 براسا دا سي ساحة بارسا دا سي تتوسطها كاتدرائية ساو باولو. البلد  البرازيل الموقع ساو باولو، البراز

Fifth race of the 2011 NASCAR Sprint Cup Series 2011 Auto Club 400 Race details[1][2] Race 5 of 36 in the 2011 NASCAR Sprint Cup Series Track map of the speedway at Auto Club Speedway AKA California SpeedwayDate March 27, 2011 (2011-03-27)Location Auto Club Speedway, Fontana, CaliforniaCourse Permanent racing facility2 mi (3.2 km)Distance 200 laps, 400 mi (643.7 km)Weather Sunny with a daytime high around 63; wind out of the WSW at 9 mphAverage speed 150.848 mil...

 

Indian actor Biju MenonBiju Menon in May 2022Born (1970-09-09) 9 September 1970 (age 53)[1]Thrissur, Kerala, IndiaNationalityIndianAlma materSt. Thomas College, ThrissurOccupationActorYears active1995–presentSpouse Samyuktha Varma ​(m. 2002)​Children1AwardsKerala State Film Awards(1997, 2010, 2021)National Film Award for Best Supporting Actor (2022) Biju Menon (born 9 September 1970) is an Indian actor who predominantly appears in Malayala...

 

Public transport in Pyongyang, North KoreaPyongyang TramOlder Tatra T6B5 vehicles on tram line 1OverviewLocale PyongyangTransit typeTramNumber of lines4Line number1, 2, 3, KumsusanOperationBegan operation1989Operator(s)Guidance Bureau of Passenger Service in Pyongyang[1]CharacterAt-gradeTrain length2 car multiple unit, 3 section articulated tramTechnicalSystem length53.5 km (33 mi)Track gauge1,435 mm (4 ft 8+1⁄2 in)1,000 mm (3 ft 3+3⁄8...

Philippine television series Little StarTitle cardGenre Drama Musical Directed byMaryo J. de los ReyesStarring Jennylyn Mercado Mark Anthony Fernandez Paolo Contis Lovi Poe Nicky Castro Opening themeLittle Star by Ciara SottoComposerTito SottoCountry of originPhilippinesOriginal languageTagalogNo. of episodes80ProductionExecutive producerMona Coles-MayugaCamera setupMultiple-camera setupRunning time30–45 minutesProduction companyTAPE Inc.Original releaseNetworkGMA NetworkReleaseOctober 25, ...

 

Village in Ferizaj, Kosovo This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jezerc – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) Place in Ferizaj, KosovoJezercë KushtrimJezercCoordinates: 42°21′37″N 20°59′18″E / 42.360...

 

Corporate Officer of the House of Commons v Information CommissionerCourtHigh Court of JusticeDecided16 May 2008Citation(s)[2008] EWHC 1084 (Admin), [2009] 3 All ER 403 (DC)Court membershipJudge(s) sittingLatham LJ, Blake J Corporate Officer of the House of Commons v Information Commissioner [2008] EWHC 1084 (Admin) was the High Court case which resulted from the attempt to prevent the disclosure of the expense claims of Members of Parliament of the United Kingdom under the Fr...

This article's lead section contains information that is not included elsewhere in the article. Please help improve the lead. (March 2022) (Learn how and when to remove this template message) Moses AnnenbergBornMoses Louis AnnenbergFebruary 11, 1877Kalwischen, East Prussia, German EmpireDiedJuly 20, 1942(1942-07-20) (aged 65)OccupationNewspaper publisherSpouseSadie Cecilia (Friedman)Children8, including Janet, Enid, and WalterRelativesWallis Annenberg (granddaughter) Lauren Bon (great-gr...

 

Dutch Golden Age painter Cornelis Droochsloot (1640 in Utrecht – after 1673 in Utrecht)[1] was a Dutch Golden Age painter. According to the RKD he was the son and pupil of Joost Cornelisz Droochsloot and is known for genre works, landscapes and farm scenes.[1] Self-portrait of Cornelis Droochsloot References ^ a b Cornelis Droochsloot in the RKD Cornelis Droochsloot on Artnet External links Wikimedia Commons has media related to Cornelis Droochsloot. Authority control databa...

 

Species of lichen Fulvophyton serusiauxii scale bar = 5 mm Scientific classification Domain: Eukaryota Kingdom: Fungi Division: Ascomycota Class: Arthoniomycetes Order: Arthoniales Family: Roccellographaceae Genus: Fulvophyton Species: F. serusiauxii Binomial name Fulvophyton serusiauxiiSparrius & Tehler (2020) Fulvophyton serusiauxii is a species of saxicolous (rock-dwelling) crustose lichen in the family Roccellographaceae.[1] It has a distinct cream-coloured, areolate...

Cemetery in Oxford, England Wolvercote Cemetery chapel Wolvercote Cemetery is a cemetery in the parish of Wolvercote and district of Cutteslowe in Oxford, England. Its main entrance is on Banbury Road and it has a side entrance in Five Mile Drive. It has a funeral chapel, public toilets and a small amount of car parking. It was awarded plaques as a category winner of 'Cemetery of the Year' in 1999 and 2001. The cemetery was opened in 1889 and now contains more than 15,000 burials. Along with ...

 

この記事は英語版の対応するページを翻訳することにより充実させることができます。(2022年1月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にし...

 

Railway station in Punjab, Pakistan Dera Taj Railway Station ڈیرہ تاج ریلوے اسٹیشنGeneral informationOwned byMinistry of RailwaysLine(s)Karachi–Peshawar Railway LineOther informationStation codeDRTJHistoryOpened1966Services Preceding station Pakistan Railways Following station Khanewal Junctiontowards Kiamari Karachi–Peshawar Line Rajput Nagartowards Peshawar Cantonment Dera Taj Railway Station (Urdu and Punjabi: ڈیرہ تاج ریلوے اسٹیشن) is located in Der...

Sofía Czarnkowska Sofía Czarnkowska, en un detalle de un monumento en la iglesia de Sieraków.Información personalNombre completo Sofía Ana Czarnkowska OpalinskaNacimiento 12 de marzo de 1660Poznań, PoloniaFallecimiento 2 de diciembre de 1701(41 años)Breslavia, PoloniaFamiliaDinastía CzarnkowskiPadre Adam Uriel CzarnkowskiMadre Teresa ZaleskaConsorte Juan Carlos OpalinskiHijos MaríaCatalinaEstanislao[editar datos en Wikidata] Sofía Ana Czarnkowska o Catalina Sofía Ana Czar...

 

كرة القدم في الألعاب الأولمبية الصيفيةالهيئة الإداريةالاتحاد الدولي لكرة القدمالمنافسات2 (رجال: 1; سيدات: 1)الألعاب 1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 قائمة الفائزين بالميداليات المسابقات (رجال・نساء) كرة القدم في دورة الألعا...

 

Salamandre tachetée Salamandra salamandra Classification ASW Règne Animalia Embranchement Chordata Sous-embr. Vertebrata Super-classe Tetrapoda Classe Amphibia Ordre Caudata Famille Salamandridae Sous-famille Salamandrinae Genre Salamandra EspèceSalamandra salamandra(Linnaeus, 1758) Statut de conservation UICN LC  : Préoccupation mineure La Salamandre tachetée (Salamandra salamandra) est une espèce d'urodèles de la famille des Salamandridae[1]. En français elle est égalemen...

Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. Jesse JaneSzületett1980. július 16.[1][2]Fort WorthElhunyt2024. január 24. (43 évesen)[3]Moore[3]ÁllampolgárságaamerikaiH...

 

Elizabeth Short nel 1946 Elizabeth Ann Short, nota come La Dalia Nera (Black Dahlia; Boston, 29 luglio 1924 – Los Angeles, 15 gennaio 1947), è la vittima di un noto caso di omicidio rimasto irrisolto negli Stati Uniti d'America. Indice 1 Biografia 1.1 La morte 2 Il delitto 2.1 Le indagini 2.2 I sospettati principali 2.2.1 Robert M. Manley 2.2.2 Walter Alonzo Bayley 2.2.3 Joseph A. Dumais 2.2.4 Woody Guthrie 2.2.5 George Hodel 2.2.6 Norman Chandler 2.2.7 George Knowlton 2.2.8 Le accuse di J...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!