Depletion region

In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field. The only elements left in the depletion region are ionized donor or acceptor impurities. This region of uncovered positive and negative ions is called the depletion region due to the depletion of carriers in this region, leaving none to carry a current. Understanding the depletion region is key to explaining modern semiconductor electronics: diodes, bipolar junction transistors, field-effect transistors, and variable capacitance diodes all rely on depletion region phenomena.

Formation in a p–n junction

Figure 1. Top: p–n junction before diffusion; Bottom: After equilibrium is reached
Figure 2. From Top to Bottom; Top: hole and electron concentrations through the junction; Second: charge densities; Third: electric field; Bottom: electric potential
Figure 3. A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Observe the different Quasi Fermi levels for conduction band and valence band in n and p regions (red curves).

A depletion region forms instantaneously across a p–n junction. It is most easily described when the junction is in thermal equilibrium or in a steady state: in both of these cases the properties of the system do not vary in time; they are in dynamic equilibrium.[1][2]

Electrons and holes diffuse into regions with lower concentrations of them, much as ink diffuses into water until it is uniformly distributed. By definition, the N-type semiconductor has an excess of free electrons (in the conduction band) compared to the P-type semiconductor, and the P-type has an excess of holes (in the valence band) compared to the N-type. Therefore, when N-doped and P-doped semiconductors are placed together to form a junction, free electrons in the N-side conduction band migrate (diffuse) into the P-side conduction band, and holes in the P-side valence band migrate into the N-side valence band.

Following transfer, the diffused electrons come into contact with holes and are eliminated by recombination in the P-side. Likewise, the diffused holes are recombined with free electrons so eliminated in the N-side. The net result is that the diffused electrons and holes are gone. In a N-side region near to the junction interface, free electrons in the conduction band are gone due to (1) the diffusion of electrons to the P-side and (2) recombination of electrons to holes that are diffused from the P-side. Holes in a P-side region near to the interface are also gone by a similar reason. As a result, majority charge carriers (free electrons for the N-type semiconductor, and holes for the P-type semiconductor) are depleted in the region around the junction interface, so this region is called the depletion region or depletion zone. Due to the majority charge carrier diffusion described above, the depletion region is charged; the N-side of it is positively charged and the P-side of it is negatively charged. This creates an electric field that provides a force opposing the charge diffusion. When the electric field is sufficiently strong to cease further diffusion of holes and electrons, the depletion region reaches the equilibrium. Integrating the electric field across the depletion region determines what is called the built-in voltage (also called the junction voltage or barrier voltage or contact potential).

Physically speaking, charge transfer in semiconductor devices is from (1) the charge carrier drift by the electric field and (2) the charge carrier diffusion due to the spatially varying carrier concentration. In the P-side of the depletion region, where holes drift by the electric field with the electrical conductivity σ and diffuse with the diffusion constant D, the net current density is given by

,

where is the electric field, e is the elementary charge (1.6×10−19 coulomb), and p is the hole density (number per unit volume). The electric field makes holes drift along the field direction, and for diffusion holes move in the direction of decreasing concentration, so for holes a negative current results for a positive density gradient. (If the carriers are electrons, the hole density p is replaced by the electron density n with negative sign; in some cases, both electrons and holes must be included.) When the two current components balance, as in the p–n junction depletion region at dynamic equilibrium, the current is zero due to the Einstein relation, which relates D to σ.

Forward bias

Forward bias (applying a positive voltage to the P-side with respect to the N-side) narrows the depletion region and lowers the barrier to carrier injection (shown in the figure to the right). In more detail, majority carriers get some energy from the bias field, enabling them to go into the region and neutralize opposite charges. The more bias the more neutralization (or screening of ions in the region) occurs. The carriers can be recombined to the ions but thermal energy immediately makes recombined carriers transition back as Fermi energy is in proximity. When bias is strong enough that the depletion region becomes very thin, the diffusion component of the current (through the junction interface) greatly increases and the drift component decreases. In this case, the net current flows from the P-side to the N-side. The carrier density is large (it varies exponentially with the applied bias voltage), making the junction conductive and allowing a large forward current.[3] The mathematical description of the current is provided by the Shockley diode equation. The low current conducted under reverse bias and the large current under forward bias is an example of rectification.

Reverse bias

Under reverse bias (applying a negative voltage to the P-side with respect to the N-side), the potential drop (i.e., voltage) across the depletion region increases. Essentially, majority carriers are pushed away from the junction, leaving behind more charged ions. Thus the depletion region is widened and its field becomes stronger, which increases the drift component of current (through the junction interface) and decreases the diffusion component. In this case, the net current flows from the N-side to the P-side. The carrier density (mostly, minority carriers) is small and only a very small reverse saturation current flows.

Determining the depletion layer width

From a full depletion analysis as shown in figure 2, the charge would be approximated with a sudden drop at its limit points which in reality is gradual and is explained by Poisson's equation. The amount of flux density would then be[4]

where and are the amount of negative and positive charge respectively, and are the distance for negative and positive charge respectively with zero at the center, and are the amount of acceptor and donor atoms respectively and is the electron charge.

Taking the integral of the flux density with respect to distance to determine electric field (i.e. Gauss's law) creates the second graph as shown in figure 2:

where is the permittivity of the substance. Integrating electric field with respect to distance determines the electric potential . This would also equal to the built in voltage as shown in Figure 2.

The final equation would then be arranged so that the function of depletion layer width would be dependent on the electric potential .

In summary, and are the negative and positive depletion layer width respectively with respect to the center, and are the concentration of acceptor and donor atoms respectively, is the electron charge and is the built-in voltage, which is usually the independent variable.[4]

Formation in an MOS capacitor

Metal–oxide–semiconductor structure on P-type silicon

Another example of a depletion region occurs in the MOS capacitor. It is shown in the figure to the right, for a P-type substrate. Supposing that the semiconductor initially is charge neutral, with the charge due to holes exactly balanced by the negative charge due to acceptor doping impurities. If a positive voltage now is applied to the gate, which is done by introducing positive charge Q to the gate, then some positively charged holes in the semiconductor nearest the gate are repelled by the positive charge on the gate, and exit the device through the bottom contact. They leave behind a depleted region that is insulating because no mobile holes remain; only the immobile, negatively charged acceptor impurities. The greater the positive charge placed on the gate, the more positive the applied gate voltage, and the more holes that leave the semiconductor surface, enlarging the depletion region. (In this device there is a limit to how wide the depletion width may become. It is set by the onset of an inversion layer of carriers in a thin layer, or channel, near the surface. The above discussion applies for positive voltages low enough that an inversion layer does not form.)

If the gate material is polysilicon of opposite type to the bulk semiconductor, then a spontaneous depletion region forms if the gate is electrically shorted to the substrate, in much the same manner as described for the p–n junction above. For more on this, see polysilicon depletion effect.

The total width of the depletion region is a function of applied reverse-bias and impurity concentration

The principle of charge neutrality says the sum of positive charges must equal the sum of negative charges:

where n and p are the number of free electrons and holes, and and are the number of ionized donors and acceptors "per unit of length", respectively. In this way, both and can be viewed as doping spatial densities. If we assume full ionization and that , then:

.

where and are depletion widths in the p and n semiconductor, respectively. This condition ensures that the net negative acceptor charge exactly balances the net positive donor charge. The total depletion width in this case is the sum . A full derivation for the depletion width is presented in reference.[5] This derivation is based on solving the Poisson equation in one dimension – the dimension normal to the metallurgical junction. The electric field is zero outside of the depletion width (seen in above figure) and therefore Gauss's law implies that the charge density in each region balance – as shown by the first equation in this sub-section. Treating each region separately and substituting the charge density for each region into the Poisson equation eventually leads to a result for the depletion width. This result for the depletion width is:

where is the relative dielectric permittivity of the semiconductor, is the built-in voltage, and is the applied bias. The depletion region is not symmetrically split between the n and p regions - it will tend towards the lightly doped side.[6] A more complete analysis would take into account that there are still some carriers near the edges of the depletion region.[7] This leads to an additional -2kT/q term in the last set of parentheses above.

Depletion width in MOS capacitor

As in p–n junctions, the governing principle here is charge neutrality. Let us assume a P-type substrate. If positive charge Q is placed on gate with area A, then holes are depleted to a depth w exposing sufficient negative acceptors to exactly balance the gate charge. Supposing the dopant density to be acceptors per unit volume, then charge neutrality requires the depletion width w to satisfy the relationship:

If the depletion width becomes wide enough, then electrons appear in a very thin layer at the semiconductor-oxide interface, called an inversion layer because they are oppositely charged to the holes that prevail in a P-type material. When an inversion layer forms, the depletion width ceases to expand with increase in gate charge Q. In this case, neutrality is achieved by attracting more electrons into the inversion layer. In the MOSFET, this inversion layer is referred to as the channel.

Electric field in depletion layer and band bending

Associated with the depletion layer is an effect known as band bending. This effect occurs because the electric field in the depletion layer varies linearly in space from its (maximum) value at the gate to zero at the edge of the depletion width:[8]

where  = 8.854×10−12 F/m, F is the farad and m is the meter. This linearly-varying electric field leads to an electrical potential that varies quadratically in space. The energy levels, or energy bands, bend in response to this potential.

See also

References

  1. ^ Robert H. Bishop (2002). The Mechatronics Handbook. CRC Press. ISBN 0-8493-0066-5.
  2. ^ John E. Ayers (2003). Digital Integrated Circuits: Analysis and Design. CRC Press. ISBN 0-8493-1951-X.
  3. ^ Sung-Mo Kang and Yusuf Leblebici (2002). CMOS Digital Integrated Circuits Analysis & Design. McGraw–Hill Professional. ISBN 0-07-246053-9.
  4. ^ a b "Electrostatic analysis of a p-n diode". ecee.colorado.edu. Retrieved 2018-09-26.
  5. ^ Pierret, Robert F. (1996). Semiconductor Device Fundamentals. pp. 209 to 216. ISBN 0201543931.
  6. ^ Sasikala, B; Afzal Khan; S. Pooranchandra; B. Sasikala (2005). Introduction to Electrical, Electronics and Communication Engineering. Firewall Media. ISBN 978-81-7008-639-0.
  7. ^ Kittel, C; Kroemer, H. (1980). Thermal Physics. W. H. Freeman. ISBN 0-7167-1088-9.
  8. ^ Wayne M. Saslow (2002). Electricity, Magnetism, and Light. Elsevier. ISBN 0-12-619455-6.

Read other articles:

Ituzaingó Localidad y municipio ItuzaingóLocalización de Ituzaingó en Provincia de CorrientesCoordenadas 27°36′00″S 56°40′00″O / -27.6, -56.666666666667Idioma oficial Español y GuaraníEntidad Localidad y municipio • País Argentina • Provincia  Corrientes • Departamento ItuzaingóIntendente Juan Pablo Valdés, (UCR-ECo)Eventos históricos   • Fundación 12 de agosto de 1864 (Bernardino Valle)Altitud   • Med...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) الجبل الأسود في الألعاب الأولمبية علم الجبل الأسود رمز ل.أ.د.  MNE ل.أ.و. اللجنة الأولمبية للجبل ال

 

Foguete H-IIA O H-IIA ou (H-2A) é um veículo de lançamento descartável japonês de combustão líquida fabricado pela Mitsubishi Heavy Industries (MHI) para a Agência Japonesa de Exploração Aeroespacial (JAXA), que presta serviços de lançamento de satélite artificial em órbita geoestacionária. Os lançamentos ocorrem a partir do Centro Espacial Tanegashima.[1][2] História O antecessor do H-IIA, H-II, levando o satélite ADEOS em 1996. O foguete H-IIA é um derivado do anterior H-...

La corbeta HMS Challenger, el barco en el que realizó la expedición científica entre 1872 y 1874. La expedición Challenger fue una expedición científica británica que realizó la primera gran campaña oceanográfica mundial. Fue realizada por un equipo de científicos a bordo de la corbeta británica HMS Challenger entre diciembre de 1872 y mayo de 1876. Historia Promovida por el escocés Sir Charles Wyville Thomson (1830–82) —de la Universidad de Edimburgo y la Merchiston Castle S...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) مالكوم مكينتوش معلومات شخصية الميلاد 14 ديسمبر 1945  ملبورن  الوفاة 7 فبراير 2000 (54 سنة)   ملبورن  الإقامة غريفيث  [لغات أخرى]‏[1]  مواطنة أست

 

Seladang Bos gaurus bull Status konservasi Rentan (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mamalia Ordo: Artiodactyla Famili: Bovidae Subfamili: Bovinae Genus: Bos Spesies: B. gaurus Nama binomial Bos gaurusSmith, 1827 Wilayah persebaran saat ini Range map Sinonim Bos gour Hardwicke, 1827 Bos cavifrons Hodgson, 1837, Bibos subhemachalanus Hodgson, 1837 Bos gaur Sundevall, 1846 Bos asseel Horsfield, 1851 Bubalibos annamiticus Heude, 1901 Sela...

هنري الثامن حوالي 1537 بواسطة هانز هولباين الأصغر . متحف تيسين بورنيميزا، مدريد.تصفية الأديرة أو حل الأديرة، أحيانا يشار إليها باسم قمع الأديرة، هي مجموعة من الإجراءات الإدارية والقانونية بين 1536 و 1541 والتي حل بموجبها هنري الثامن الأديرة، رئاسة الدير ودير الرهبان، في إنجلترا

 

FeuerwehrGroßbritannien Notruf: 999 oder 112 Personal Aktive(ohne Jugend): 60.500 Freiwilligenquote: 2 % Frauenquote: 3 % Stützpunkte Gesamtanzahl: 2.053 Einsätze Gesamtanzahl: 705.924 Aufteilung nach Einsatzart Brandeinsätze 222.511 Stand der Daten 2019 Feuerwehrfahrzeug der Londoner Feuerwehr Die Feuerwehren in Großbritannien arbeiten in England und Wales, in Nordirland und in Schottland unter getrennten legislativen und administrativen Regelungen. Der Notfallschutz wird von ...

 

Highway in Nevada This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nevada State Route 146 – news · newspapers · books · scholar · JSTOR (April 2019) State Route 146Saint Rose ParkwayNevada State Route 146, highlighted in red.Route informationMaintained by NDOTLength6.673 mi[1] (10....

Юго-Восточное викариатствоМосковская епархия Регионы ЮВАО Москвы Дата основания 27 декабря 2011 года Управление Иерарх Савва (Михеев), Иоанн (Руденко), Дионисий (Порубай) и Матфей (Копылов) Викарные епископы Матфей (Копылов), архиепископ Егорьевский(с 16 июля 2019 года) ...

 

AntennaAntenna Co., Ltd.原文名称(주)안테나公司類型私人公司成立Toy Music (1997–2007)Antenna Music (2007–2015)創辦人柳喜烈代表人物정동인、柳喜烈總部 韩国首爾特別市江南區島山大路37號26樓 Antenna Co.产业K-POP、音樂製作產品專輯、演唱會服務音樂專輯、經紀公司、新人培訓主要股東Kakao娛樂(57.93%)柳喜烈(21.37%)劉在錫(20.7%)网站Antenna Antenna(韓語:안테나)是一間韓國藝人企劃和經...

 

У Вікіпедії є статті про інших людей із прізвищем Яневський. Данило Борисович Яневський Народився 21 червня 1956(1956-06-21) (67 років)ЧернівціКраїна  СРСР УкраїнаМісце проживання КиївДіяльність історія, журналістикаГалузь історія[1], журналістика[1], редагуван...

American communication professional Johanna MaskaNationalityAmericanAlma materUniversity of KansasOccupationCommunications consultant Johanna Maska is an American communication professional. She was a longstanding aide to American President Barack Obama. She is CEO of the consulting firm, Global Situation Room.[1] Life Maska grew up in Galesburg, Illinois. She went to the University of Kansas, which she credited at a commencement address for her optimism.[2] [3] S...

 

Latter-day Saints Church in Los Angeles, California, USA Los Angeles California TempleNumber10DedicationMarch 11, 1956, by David O. McKaySite13 acres (5.3 ha)Floor area190,614 sq ft (17,708.6 m2)Height257 ft (78 m)Official website • News & imagesChurch chronology ←Bern Switzerland Temple Los Angeles California Temple →Hamilton New Zealand Temple Additional informationAnnouncedMarch 6, 1937, by Heber J. GrantGroundbreakingSeptember 22, 1951, by David...

 

German darts player (born 1990) Darts playerFlorian HempelHempel in 2019Personal informationFull nameFlorian HempelBorn (1990-04-10) 10 April 1990 (age 33)[1][2]Dessau, East GermanyHome townCologne, GermanyDarts informationPlaying darts since2017DartsWinmau[3]LateralityRight-handedWalk-on musicKölsche Jung by BringsOrganisation (see split in darts)PDC2018– (Tour Card: 2021-)Current world ranking59 2 (26 November 2023)[4]PDC premier e...

See also: List of nuclear weapons tests Trinity, part of Project Manhattan, was the first ever nuclear explosion. The nuclear weapons tests of the United States were performed from 1945 to 1992 as part of the nuclear arms race. The United States conducted around 1,054 nuclear tests by official count, including 216 atmospheric, underwater, and space tests.[1][notes 1] Most of the tests took place at the Nevada Test Site (NNSS/NTS) and the Pacific Proving Grounds in the Marshall...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sinop Fortress – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this template message) Sinop FortressSinop Province, Turkey Sinop FortressCoordinates42°01′42.5″N 35°08′47.3″E / 42.028472°N 35.14...

 

A form of Chinese upper garment RuTheatrical coat for Court Lady, 18th century.Han Woman's ao, 19th century, from the Cleveland Museum of ArtChinese襦Literal meaningshort coat/ jacketTranscriptionsStandard MandarinHanyu PinyinRúShanChinese衫Literal meaningshirt; robe; gown; jacketTranscriptionsStandard MandarinHanyu PinyinshānTongyong PinyinshānAoChinese袄Traditional Chinese襖Literal meaningouter garments/ coat/ jacket/ lined coatTranscriptionsStandard MandarinHanyu PinyinǎoYiChi...

Championnats d'Europe de luge Généralités Sport Luge de course Création 1914 Organisateur(s) Fédération internationale de luge de course Périodicité Bisannuel, annuel depuis 2012 Palmarès Tenant du titre Hommes Max Langenhan Femmes Anna BerreiterDoubles Hommes Tobias Wendl/Tobias ArltDoubles Femmes Andrea Vötter/Marion OberhoferRelais Lettonie modifier Les premiers Championnats d'Europe de luge se sont déroulés en 1914 à Reichenberg (Bohême). À partir de 1935, elles sont l'égi...

 

Banner in Inner Mongolia, ChinaOtog Banner 鄂托克旗 • ᠣᠲᠣᠭ ᠬᠣᠰᠢᠭᠤBannerA public square in QipanjingOtog in Ordos CityOrdos City in Inner MongoliaOtogLocation of the seat in Inner MongoliaShow map of Inner MongoliaOtogOtog (China)Show map of ChinaCoordinates: 39°05′23″N 107°58′34″E / 39.0897°N 107.9762°E / 39.0897; 107.9762CountryChinaAutonomous regionInner MongoliaPrefecture-level cityOrdosBanner seatWulan [zh]Area...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!