Deflection (engineering)

Deflection (f) in engineering

In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement). A longitudinal deformation (in the direction of the axis) is called elongation.

The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations. Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.

An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

Beam deflection for various loads and supports

Beams can vary greatly in their geometry and composition. For instance, a beam may be straight or curved. It may be of constant cross section, or it may taper. It may be made entirely of the same material (homogeneous), or it may be composed of different materials (composite). Some of these things make analysis difficult, but many engineering applications involve cases that are not so complicated. Analysis is simplified if:

  • The beam is originally straight, and any taper is slight
  • The beam experiences only linear elastic deformation
  • The beam is slender (its length to height ratio is greater than 10)
  • Only small deflections are considered (max deflection less than 1/10 of the span).

In this case, the equation governing the beam's deflection () can be approximated as: where the second derivative of its deflected shape with respect to ( being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal bending moment in the beam.

If, in addition, the beam is not tapered and is homogeneous, and is acted upon by a distributed load , the above expression can be written as:

This equation can be solved for a variety of loading and boundary conditions. A number of simple examples are shown below. The formulas expressed are approximations developed for long, slender, homogeneous, prismatic beams with small deflections, and linear elastic properties. Under these restrictions, the approximations should give results within 5% of the actual deflection.

Cantilever beams

Cantilever beams have one end fixed, so that the slope and deflection at that end must be zero.

Schematic of the deflection of a cantilever beam.

End-loaded cantilever beams

Cantilever beam with a force on the free end

The elastic deflection and angle of deflection (in radians) at the free end in the example image: A (weightless) cantilever beam, with an end load, can be calculated (at the free end B) using:[1] where

Note that if the span doubles, the deflection increases eightfold. The deflection at any point, , along the span of an end loaded cantilevered beam can be calculated using:[1]

Note: At (the end of the beam), the and equations are identical to the and equations above.

Uniformly loaded cantilever beams

Cantilever beam with a uniform distributed load

The deflection, at the free end B, of a cantilevered beam under a uniform load is given by:[1] where

  • = uniform load on the beam (force per unit length)
  • = length of the beam
  • = modulus of elasticity
  • = area moment of inertia of cross section

The deflection at any point, , along the span of a uniformly loaded cantilevered beam can be calculated using:[1]

Simply supported beams

Simply supported beams have supports under their ends which allow rotation, but not deflection.

Schematic of the deflection of a simply supported beam.

Center-loaded simple beams

Simply supported beam with a force in the center

The deflection at any point, , along the span of a center loaded simply supported beam can be calculated using:[1] for

The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by:[1] where

  • = force acting on the center of the beam
  • = length of the beam between the supports
  • = modulus of elasticity
  • = area moment of inertia of cross section

Off-center-loaded simple beams

Simply supported beam with a force off center

The maximum elastic deflection on a beam supported by two simple supports, loaded at a distance from the closest support, is given by:[1] where

  • = force acting on the beam
  • = length of the beam between the supports
  • = modulus of elasticity
  • = area moment of inertia of cross-section
  • = distance from the load to the closest support

This maximum deflection occurs at a distance from the closest support and is given by:[1]

Uniformly loaded simple beams

Simply supported beam with a uniform distributed load

The elastic deflection (at the midpoint C) on a beam supported by two simple supports, under a uniform load (as pictured) is given by:[1] where

  • = uniform load on the beam (force per unit length)
  • = length of the beam
  • = modulus of elasticity
  • = area moment of inertia of cross section

The deflection at any point, , along the span of a uniformly loaded simply supported beam can be calculated using:[1]

Combined loads

The deflection of beams with a combination of simple loads can be calculated using the superposition principle.

Change in length

The change in length of the beam, projected along the line of the unloaded beam, can be calculated by integrating the slope function, if the deflection function is known for all .

Where:

  • = change in length (always negative)
  • = slope function (first derivative of )
  • [2]

If the beam is uniform and the deflection at any point is known, this can be calculated without knowing other properties of the beam.

Units

The formulas supplied above require the use of a consistent set of units. Most calculations will be made in the International System of Units (SI) or US customary units, although there are many other systems of units.

International system (SI)

  • Force: newtons ()
  • Length: metres ()
  • Modulus of elasticity:
  • Moment of inertia:

US customary units (US)

  • Force: pounds force ()
  • Length: inches ()
  • Modulus of elasticity:
  • Moment of inertia:

Others

Other units may be used as well, as long as they are self-consistent. For example, sometimes the kilogram-force () unit is used to measure loads. In such a case, the modulus of elasticity must be converted to .

Structural deflection

Building codes determine the maximum deflection, usually as a fraction of the span e.g. 1/400 or 1/600. Either the strength limit state (allowable stress) or the serviceability limit state (deflection considerations among others) may govern the minimum dimensions of the member required.

The deflection must be considered for the purpose of the structure. When designing a steel frame to hold a glazed panel, one allows only minimal deflection to prevent fracture of the glass.

The deflected shape of a beam can be represented by the moment diagram, integrated (twice, rotated and translated to enforce support conditions).

See also

References

  1. ^ a b c d e f g h i j Gere, James M.; Goodno, Barry J. (January 2012). Mechanics of Materials (Eighth ed.). pp. 1083–1087. ISBN 978-1-111-57773-5.
  2. ^ Roark's Formulas for Stress and Strain, 8th Edition Eq 8.1-14

Read other articles:

فوكوشيما    علم شعار الاسم الرسمي (باليابانية: 福島市)‏(باليابانية: 福島町)‏    الإحداثيات 37°45′39″N 140°28′29″E / 37.760805555556°N 140.47472222222°E / 37.760805555556; 140.47472222222  [1] تاريخ التأسيس 1 أبريل 1907  تقسيم إداري  البلد اليابان[2][3]  التقسيم الأعلى فو...

 

Hala Gąsienicowa Hala Gąsienicowa Hala Gąsienicowa Lage Woiwodschaft Kleinpolen, Polen Gebirge Hohe Tatra, Westtatra, Tatra, Karpaten Geographische Lage 49° 14′ 39″ N, 20° 0′ 26″ O49.24416666666720.007222222222Koordinaten: 49° 14′ 39″ N, 20° 0′ 26″ O Hala Gąsienicowa (Kleinpolen) Gewässer Czarny Potok Gąsienicowy, Sucha Woda Gąsienicowa Klima Hochgebirgsklima Vorlage:Infobox Gletscher/Wartung/Bildbesch...

 

Bactérias da espécie Escherichia coli expressando diferentes tipos de proteínas fluorescentes vermelhas. Proteína fluorescente vermelha (do inglês Red Fluorescent Protein, RFP) é um fluoróforo que apresenta fluorescências laranja-vermelha quando excitado. Várias variantes foram desenvolvidas usando mutagênese dirigida.[1] O original foi isolado de Discosoma e denominado DsRed. Outros estão agora disponíveis com fluorescência em laranja, vermelho e vermelho extremo.[2] RFP é de a...

Bandeira esperantista Esperanta flago Proporção 3:2 Descrição Uma estrela verde de cinco pontas e de raio 3,5 no centro de um quadrado branco de lado 10 e localizado na parte superior a esquerda de um retângulo verde de largura 20 e comprimento 30. A bandeira do movimento esperantista. O verde da bandeira: #009F6B Antigo cartão postal ilustrado motrando com bandeira (ligeiramente mal representada) A bandeira do esperanto (Esperanto-flago) é um dos símbolos do movimento associado à di...

 

العلاقات اللاوسية اللبنانية لاوس لبنان   لاوس   لبنان تعديل مصدري - تعديل   العلاقات اللاوسية اللبنانية هي العلاقات الثنائية التي تجمع بين لاوس ولبنان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة لاوس لبنان ال

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 149° خط طول 149 شرق خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من ك...

Title in the Peerage of the United Kingdom Field Marshal Sir Stapleton Stapleton-Cotton, 6th Bt, who became 1st Baron Combermere (1814) and 1st Viscount Combermere (1827). Viscount Combermere, of Bhurtpore in the East Indies and of Combermere in the County Palatine of Chester, is a title in the Peerage of the United Kingdom. It was created in 1827 for the prominent military commander Stapleton Stapleton-Cotton, 1st Baron Combermere. He had already been created Baron Combermere, of Combermere ...

 

British radio news and current affairs programme This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (May 2015) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: PM...

 

For the Julie London album, see Yummy, Yummy, Yummy (album). For the national anthem of Vanuatu, see Yumi, Yumi, Yumi. 1968 single by Ohio ExpressYummy Yummy YummyCover of the German releaseSingle by Ohio Expressfrom the album Ohio Express B-sideZig ZagReleasedApril 1968Genre Bubblegum[1] garage rock[2] Length2:30LabelBuddahSongwriter(s)Arthur Resnick and Joey LevineProducer(s)Jerry KasenetzJeffry KatzJoey LevineArthur ResnickEngineer: Bruce StapleOhio Express singles chronolo...

Mi acehMi acehTempat asal IndonesiaDaerahAcehBahan utamaMi, daging (kambing atau sapi) atau makanan laut (udang dan ikan), rempah sejenis kari, seledri, daun bawang, bawang merahVariasiMi aceh goreng (basah atau kering), mi aceh tumis (dengan sedikit kuah) dan mi aceh kuah  Media: Mi aceh Salah satu rumah makan mi aceh. Rumah makan ini juga biasanya menjual nasi goreng dan roti canai. Mi aceh goreng Mi aceh adalah masakan mi pedas khas Aceh di Indonesia.[1] Mi kuning teb...

 

كاس السوبر البورتوجالى 2019 البلد پورتوجال  الرياضه كورة قدم  الموسم 42  تاريخ 4 اغسطس 2019  عدد المشاركين الفرق المشاركه نادى بنفيكاسبورتينج لشبونه  عدد المباريات تعديل  كاس السوبر البورتوجالى 2019 (بالانجليزى: 2019 Supertaça Cândido de Oliveira) هوا موسم رياضى فى كورة قدم اتعمل...

 

24.ª edición de los Premios ÓscarPremio a La excelencia en logros cinematográficosOtorgado por Academia de las Artes y las Ciencias Cinematográficas (AMPAS)Fecha 20 de marzo de 1952Ubicación RKO Pantages Theatre, Hollywood, CaliforniaEstados UnidosAnfitrión Danny KayeDestacadoMás premios Un americano en París y A Place in the Sun (6)Más nominaciones Un tranvía llamado Deseo (12) Cronología 23.ª edición 24.ª edición de los Premios Óscar 25.ª edición Sitio web oficial[ed...

Australian politician For the British musician, see Archibald Jacob (musician). Archibald Hamilton Jacob (31 July 1829 – 28 May 1900) was a politician in the colony of New South Wales. He served nearly thirty years in the lower and upper houses of the colonial government, as both elected and appointed representative, government minister and Chairman of Committees of the New South Wales Legislative Council.[1] Jacob was born in Jessore, in the Bengal Presidency of Britis...

 

ViolatorÁlbum de estudio de Depeche ModePublicación 19 de marzo de 1990Grabación diversos lugares durante 1989 y 1990Género(s) Synth pop, Dark waveFormato CD, disco de vinilo, casete, DCC, MD y streamingDuración 47 minutosDiscográfica Mute Records Sire/RepriseProductor(es) Depeche Mode y Flood Cronología de Depeche Mode 101 (1989) Violator (1990) Songs of Faith and Devotion (1993) Sencillos de Violator «Personal Jesus»Publicado: 29 de agosto de 1989 en Europa19 de septiembre de 1989 ...

 

ظهرة الجميمه البلد سلطنة عمان  الارض و السكان الحكم التأسيس والسيادة [[تصنيف: غلط فى قوالب ويكى بيانات|]] تعديل مصدري - تعديل   ظهرة الجميمه (Dhaharat Al-Jimaymah) هيا تجمع سكان فى سلطنة عمان. المكان ظهرة الجميمه موجوده فى منطقة اداريه اسمها ولاية عبرى. شوف كمان تجمع سكان لينكات ال...

Nota Iste articulo require revision linguistic Corrige le errores de grammatica, orthographia o stilo in le articulo. Postea, retira iste patrono. Sport subclasse de: physical activity[*] parte de: sport, games, physical exercises[*] Commons: Sports Sport Le sport[1] es un activitate athletic que require habilitate physic o cerebral, sovente in un maniera competitive. Le concepto es difficile a definir exactemente proque il ha differentias de opinion super si certe jocos es considera...

 

High school in JakartaThis article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2018) Public Senior High School 82 Jakarta (Indonesian: SMA Negeri 82 Jakarta) is a public senior high school in Jakarta, Indonesia. It is located at Jl. Daha II / 15A, Kebayoran Baru, South Jakarta. Phone no. 021-7246413. Website: http://sman82jkt.sch.id This Indonesia school-related article is a stub. Y...

 

Rajpal YadavRajpal YadavLahirShahjahanpur, Uttar Pradesh, IndiaKebangsaanIndiaAlmamaterUniversitas Rohilkhand,[1] Bhartendu Academy of Dramatic Arts, Sekolah Nasional DramaPekerjaanPemeran, penghibur, komedianTahun aktif1997–sekarangSuami/istriRadha Yadav Rajpal Yadav adalah seorang pemeran India, yang dikenal atas karya-karyanya dalam perfilman Hindi.[2] Ia paling dikenal atas peran komikanya dalam film. Rujukan ^ राजपाल यादव: बहुत कम ...

Indian actor Chetan ChandraBorn (1986-04-10) 10 April 1986 (age 37)Bangalore, Karnataka, IndiaOccupationActorYears active2008–present Chetan Chandra (born 10 April 1986) is an Indian actor working in the Kannada film industry.[1] Early life and family Chetan Chandra was born to K. B. Ramachandra and B. N. Anusuya. K. B. Ramachandra is a mining engineer in Malaysia. Chandra is a graduate in Information Science Engineering. He is married to Rachana Hegade.[2] He has ...

 

Hsen Hsu Hu Información personalNombre en Chinese (China) 胡先驌 Nacimiento 1894Xinjian District (República Popular China) Fallecimiento 1968Pekín (República Popular China) Sepultura Tomb of the three elders Residencia ChinaChinaNacionalidad ChinaEducaciónEducado en Universidad de HarvardUniversidad de California en BerkeleyUniversidad de Pekín Información profesionalÁrea botánica, pteridología y ficologíaEmpleador Universidad de NankínUniversidad de PekínUniversidad Normal de...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!