D. R. Kaprekar

D. R. Kaprekar
D. R. Kaprekar
Born
D.R. Kaprekar

(1905-01-17)17 January 1905
Died1986(1986-00-00) (aged 80–81)
Devlali, Maharashtra, India
OccupationSchool teacher
Known forContributions to recreational mathematics

Dattatreya Ramchandra Kaprekar (Marathi: दत्तात्रेय रामचंद्र कापरेकर; 17 January 1905 – 1986) was an Indian recreational mathematician who described several classes of natural numbers including the Kaprekar, harshad and self numbers and discovered the Kaprekar's constant, named after him.[1] Despite having no formal postgraduate training and working as a schoolteacher, he published extensively and became well known in recreational mathematics circles.[2]

Education and work

Kaprekar received his secondary school education in Thane and studied at Fergusson College in Pune. In 1927, he won the Wrangler R. P. Paranjpye Mathematical Prize for an original piece of work in mathematics.[3]

He attended the University of Mumbai, receiving his bachelor's degree in 1929. Having never received any formal postgraduate training, for his entire career (1930–1962) he was a schoolteacher at the government junior school in Devlali Maharashtra, India. Cycling from place to place he also tutored private students with unconventional methods, cheerfully sitting by a river and "thinking of theorems". He published extensively, writing about such topics as recurring decimals, magic squares, and integers with special properties.[citation needed]

Discoveries

Working largely alone, Kaprekar discovered a number of results in number theory and described various properties of numbers.[4] In addition to the Kaprekar's constant and the Kaprekar numbers which were named after him, he also described self numbers or Devlali numbers, the harshad numbers and Demlo numbers. He also constructed certain types of magic squares related to the Copernicus magic square.[5] Initially his ideas were not taken seriously by Indian mathematicians, and his results were published largely in low-level mathematics journals or privately published, but international fame arrived when Martin Gardner wrote about Kaprekar in his March 1975 column of Mathematical Games for Scientific American. A description of Kaprekar's constant, without mention of Kaprekar, appears in the children's book The I Hate Mathematics Book, by Marilyn Burns,[6] published in 1975. Today his name is well-known and many other mathematicians have pursued the study of the properties he discovered.[2]

Kaprekar's Constant

In 1955, Kaprekar discovered an interesting property of the number 6174, which was subsequently named the Kaprekar constant.[7] He showed that 6174 is reached in the end as one repeatedly subtracts the highest and lowest numbers that can be constructed from a set of four digits that are not all identical. Thus, starting with 1234, we have:

4321 − 1234 = 3087, then
8730 − 0378 = 8352, and
8532 − 2358 = 6174.

Repeating from this point onward leaves the same number (7641 − 1467 = 6174). In general, when the operation converges it does so in at most seven iterations.

A similar constant for 3 digits is 495.[8] However, in base 10 a single such constant only exists for numbers of 3 or 4 digits; for other digit lengths or bases other than 10, the Kaprekar's routine algorithm described above may in general terminate in multiple different constants or repeated cycles, depending on the starting value.[9]

Kaprekar number

Another class of numbers Kaprekar described are Kaprekar numbers.[10] A Kaprekar number is a positive integer with the property that if it is squared, then its representation can be partitioned into two positive integer parts whose sum is equal to the original number (e.g. 45, since 452=2025, and 20+25=45, also 9, 55, 99 etc.) However, note the restriction that the two numbers are positive; for example, 100 is not a Kaprekar number even though 1002=10000, and 100+00 = 100. This operation, of taking the rightmost digits of a square, and adding it to the integer formed by the leftmost digits, is known as the Kaprekar operation.

Some examples of Kaprekar numbers in base 10, besides the numbers 9, 99, 999, ..., are (sequence A006886 in the OEIS):

Number Square Decomposition
703 703² = 494209 494+209 = 703
2728 2728² = 7441984 744+1984 = 2728

Devlali or self number

In 1963, Kaprekar defined the property which has come to be known as self numbers,[11] as the integers that cannot be generated by taking some other number and adding its own digits to it. For example, 21 is not a self number, since it can be generated from 15: 15 + 1 + 5 = 21. But 20 is a self number, since it cannot be generated from any other integer. He also gave a test for verifying this property in any number. These are sometimes referred to as Devlali numbers (after the town where he lived); though this appears to have been his preferred designation,[11] the term "self number" is more widespread. Sometimes these are also designated Colombian numbers after a later designation.

Harshad number

Kaprekar also described the harshad numbers which he named harshad, meaning "giving joy" (Sanskrit harsha, joy +da taddhita pratyaya, causative); these are defined by the property that they are divisible by the sum of their digits. Thus 12, which is divisible by 1 + 2 = 3, is a harshad number. These were later also called Niven numbers after 1977 lecture on these by the Canadian mathematician Ivan M. Niven. Numbers which are harshad in all bases (only 1, 2, 4, and 6) are called all-harshad numbers. Much work has been done on harshad numbers, and their distribution, frequency, etc. are a matter of considerable interest in number theory today.[citation needed]

Demlo number

Kaprekar also studied the Demlo numbers,[12] name of which was derived from the name of a train station Demlo (now called Dombivili) 30 miles from Bombay on the then G. I. P. Railway where he had the idea of studying them.[2] The best known of these are the Wonderful Demlo numbers 1, 121, 12321, 1234321, ..., which are the squares of the repunits 1, 11, 111,1111, ....[13]

See also

References

  1. ^ "क्‍या आप जानते हैं जादुई नंबर 6174 की पहेली? इस भारतीय गणितज्ञ ने की खोज". आज तक (in Hindi). 17 January 2023. Retrieved 13 October 2024.
  2. ^ a b c O'Connor, John J.; Robertson, Edmund F., "D. R. Kaprekar", MacTutor History of Mathematics Archive, University of St Andrews
  3. ^ Dilip M. Salwi (24 January 2005). "Dattaraya Ramchandra Kaprekar". Archived from the original on 16 November 2007. Retrieved 30 November 2007.
  4. ^ Athmaraman, R. (2004). The Wonder World of Kaprekar Numbers. Chennai (India): The Association of Mathematics Teachers of India.
  5. ^ Kaprekar, D. R. (1974). "The Copernicus Magic Square". Indian Journal of History of Science. 9 (1).
  6. ^ Burns, Marilyn (1975). The I Hate Mathematics Book. Boston: Little Brown and Company. p. 85. ISBN 0-316-11741-2.
  7. ^ Kaprekar, D.R. (1955). ""An interesting property of the number 6174"". Scripta Mathematica. 21: 304 – via Elsevier Science Direct.
  8. ^ An informal proof of the property for three digits
  9. ^ "Mysterious number 6174" in Plus Magazine
  10. ^ Weisstein, Eric W. "Kaprekar Number". MathWorld.
  11. ^ a b Kaprekar, D. R. The Mathematics of New Self-Numbers Devalali (1963)nn: 19–20
  12. ^ Gunjikar, K. R.; Kaprekar, D. R. (1939). "Theory of Demlo numbers" (PDF). J. Univ. Bombay. VIII (3): 3–9.
  13. ^ Weisstein, Eric W. "Demlo Number". MathWorld.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Beni Baningime Informasi pribadiNama lengkap Beni BaningimeTanggal lahir 9 September 1998 (umur 25)Tempat lahir Kinshasa, Republik Demokratik KongoTinggi 178 cm (5 ft 10 in)Posisi bermain GelandangInformasi klubKlub saat ini Everto...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2023) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً ت

 

The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Split Image novel – news · newspapers · books · scholar · JSTOR (Apr...

نيكولاي لينكا   معلومات شخصية الميلاد 2 يناير 1929  الوفاة 28 يونيو 2008 (79 سنة) [1]  سبب الوفاة مرض آلزهايمر  الجنسية رومانيا  الحياة العملية المهنة ملاكم[2]  نوع الرياضة الملاكمة  تعديل مصدري - تعديل   نيكولاي لينكا (بالرومانية: Nicolae Linca)‏ (2 يناير 1929 – 28 يو

 

Diverse fragmenten verkregen van één of meerdere Spaanse matten, één volledige munt had de waarde van 8 Real. Eén real staat gelijk aan één bit en twee bit stond gelijk aan een kwart van een Spaanse mat. Na de invoering van de Amerikaanse dollar, op 2 april 1792, werden 2 bit gelijk gesteld aan vijfentwintig dollarcent; oftewel een quarter dollar (kwartje). Het woord bit (stuk) is een historische Engelstalige term die verwees naar munten, behorenden tot verschillende valuta overal ter ...

 

West Side Story kan verwijzen naar: West Side Story (toneelmusical), een Amerikaanse musical uit 1957 West Side Story (1961), een Amerikaanse film uit 1961 gebaseerd op de musical West Side Story (2021), een Amerikaanse film uit 2020 gebaseerd op de musical Bekijk alle artikelen waarvan de titel begint met West Side Story of met West Side Story in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van West Side Story inzichtelijk...

Soviet aircraft machine gun This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2013) (Learn how and when to remove this template message) ShKAS machine gun A ShKAS at the Zadorozhny Equipment MuseumTypeAircraft machine gunPlace of originSoviet UnionService historyUsed bySee UsersWars World War II Spanish Civil War Second Sino-Japanese War Pro...

 

Salib Ortodoks Timur 4 Januari - Kalender liturgi Ortodoks Timur - 6 Januari Seluruh peringatan di bawah ini dirayakan pada 18 Oktober oleh Gereja-gereja Ortodoks yang memakai Kalender Lama. Untuk 5 Januari, Gereja-gereja Ortodoks yang memakai Kalender Lama memperingati orang-orang kudus pada 23 Desember. Perayaan Malam Teofani dari Bapa Kami dan Juruselamat Yesus Kristus.[1] Janasuci Nabi Mikha (abad ke-9 SM)[1] Martir Teopemptus, Uskup Nikomedia dan Martir Teonas, mantan pen...

 

2021 Missouri Tigers baseballConferenceSoutheastern ConferenceDivisionEastern DivisionRecord16-36 (8–22 SEC)Head coachSteve Bieser (5th season)Assistant coaches Fred Corral (4th year) Jason Hagerty (1st year) Home stadiumTaylor StadiumSeasons← 20202022 → 2021 Southeastern Conference baseball standings vte Conf Overall Team W   L   PCT W   L   PCT Eastern No. 6 Tennessee  x‍‍‍y 20 – 10   .667 50 – 18 ...

American racing driver Not to be confused with Jerick Johnson. NASCAR driver Jarit JohnsonJohnson being interviewed in 2013Born (1979-01-16) January 16, 1979 (age 44)El Cajon, California, U.S.Awards2013 TORC Off Road Series Rookie of the YearNASCAR Xfinity Series career4 races run over 3 years2010 position128thBest finish119th (2009)First race2008 Kroger On Track for the Cure 250 (Memphis)Last race2010 Federated Auto Parts 300 (Nashville) Wins Top tens Poles 0 0 0 NASCAR Craftsman Truck ...

 

Jenderal SoedirmanPoster rilis teatrikalSutradara Viva Westi Produser Sekar Ayu Asmara Handi Ilfat Nolizam Ratna Syahnakri Ditulis oleh Tubagus Deddy Viva Westi PemeranAdipati DolkenIbnu JamilMathias MuchusBaim WongNugieLukman SardiAnnisa HertamiLandung SimatupangPenata musikIwang NoorsaidSinematograferMuhammad FirdausPenyuntingSastha SunuPerusahaanproduksiMarkas Besar TNI ADPadma PicturesYayasan Kartika Eka PaskiDistributorPadma PicturesTanggal rilis27 Agustus 2015 (2015-08-27)Dur...

 

Ob single-member constituency Constituency of the Russian State DumaDeputyTatyana SolomatinaUnited RussiaFederal subjectTomsk OblastDistrictsAlexandrovsky, Bakcharsky, Chainsky, Kargasoksky, Kedrovy, Kolpashevsky, Kozhevnikovsky, Krivosheinsky, Molchanovsky, Parabelsky, Shegarsky, Strezhevoy, Tomsk (Kirovsky, Sovetsky), Tomsky (Bogashevskoye, Kaltayskoye, Kopylovskoye, Kornilovskoye, Mezheninovskoye, Mirnenskoye, Moryakovskoye, Novorozhdestvenskoye, Oktyabrskoye, Rybalovskoye, Spasskoye, Turu...

Long Live the KingPoster rilis teatrikalSutradara Kang Yoon-sung Produser Yoo Young-Chae Ditulis oleh Beodeunamusup Kang Yoon-sung SkenarioBeodeunamusup, Kang Yoon-sungPemeranKim Rae-won Won Jin-ah Jin Seon-kyu Choi Gwi-haPerusahaanproduksiB.A. EntertainmentDistributorMegabox Plus M/Contents NandakindaTanggal rilis 09 Juni 2019 (2019-06-09) Durasi118 menitNegara Korea Selatan Bahasa Korea Long Live the King (Korea: 롱 리브 더 킹: 목포 영웅; RR: Long Live The King: Mokpo Yeongwoo...

 

Soviet Army General In this name that follows Eastern Slavic naming conventions, the patronymic is Ivanovich and the family name is Ivashutin. Pyotr IvashutinNative nameПётр Ива́нович Ивашу́тинBorn18 September 1909Brest-Litovsk, Russian EmpireDied4 June 2002(2002-06-04) (aged 92)Moscow, RussiaBuriedTroyekurovskoye CemeteryAllegiance Soviet UnionService/branchRed Army NKVDSMERSHMGB Main Intelligence Directorate (GRU) MVDKGBYears of service1931–1992Ran...

 

South Korean singer and actor (born 1999) For the volleyball player of the same name, see Kim Yo-han (volleyball). In this Korean name, the family name is Kim. Kim Yo-han김요한Kim Yo-han in October 2019Born (1999-09-22) September 22, 1999 (age 24)Jungnang District, Seoul, South KoreaAlma materSangmyung UniversityOccupationsSingeractorMusical careerGenresK-popInstrument(s)VocalsYears active2019–presentLabelsOuiSwingMember ofWEiFormerly ofX1Websitewww.ouient.com/47 Musical artist...

Regionalist political party in Costa Rica This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Authentic Limonense Party – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) Limonese Authentic Party Partido Auténtico LimonensePresidentJunior Albert Allen W...

 

Ethnic group in South Africa and Zimbabwe Not to be confused with the Vedda people. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Venda people – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this template message) Vha-VendaTotal population~2.5 millionRegions with...

 

Romanian businessman and politician Cristian Boureanu (March 2013) Cristian Alexandru Boureanu (born December 15, 1972) is a Romanian businessman and politician. A former member of the Democratic Liberal Party (PD-L), he was a member of the Romanian Chamber of Deputies for Argeș County from 2004 to 2012. He and his first wife Irina had a daughter before divorcing in 2003. In 2007, he married Valentina Pelinel, a former model,[1][2][3] and divorced her in 2014.[4&#...

Today's ZamanTipeSurat kabar harianFormatLembar lebarPemilikFeza Inc.RedaksiBülent KeneşDidirikan2007PusatFevzi Cakmak Mah. A. Taner Kislali Cad. No:6 34194 Bahcelievler, Istanbul, TurkiSitus webwww.todayszaman.com Today's Zaman adalah sebuah harian berbahasa Inggris di Turki. Didirikan pada 16 Januari 2007, sebagai edisi berbahasa Inggris dari harian Turki Zaman, Today's Zaman meliputi penyorotan domestik dan internasional. Kontributornya meliputi kartunis Cem Kızıltuğ. Ideologi Today's...

 

Madonna col Bambino, san Giovanni Battista e san Giorgio, exposto no Palazzo Bianco (Gênova) Bernardo Castello (Gênova, 1557 — Gênova, 4 de outubro 1629) foi um pintor italiano renomado por seus quadros com inspiração histórica. Ele nasceu em Albaro, atualmente um bairro de Gênova, Itália. Bernardo Castello foi aprendiz de Alessandro Semini e de Luca Cambiaso. Muito embora é preciso fazer distinção entre a sua pessoa e a do artista Giovanni Battista Castello, Il bergamesco, que f...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!