Cramér's conjecture

In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936,[1] is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that

where pn denotes the nth prime number, O is big O notation, and "log" is the natural logarithm. While this is the statement explicitly conjectured by Cramér, his heuristic actually supports the stronger statement

and sometimes this formulation is called Cramér's conjecture. However, this stronger version is not supported by more accurate heuristic models, which nevertheless support the first version of Cramér's conjecture.

The strongest form of all, which was never claimed by Cramér but is the one used in experimental verification computations and the plot in this article, is simply

None of the three forms has yet been proven or disproven.

Conditional proven results on prime gaps

Cramér gave a conditional proof of the much weaker statement that

on the assumption of the Riemann hypothesis.[1] The best known unconditional bound is

due to Baker, Harman, and Pintz.[2]

In the other direction, E. Westzynthius proved in 1931 that prime gaps grow more than logarithmically. That is,[3]

His result was improved by R. A. Rankin,[4] who proved that

Paul Erdős conjectured that the left-hand side of the above formula is infinite, and this was proven in 2014 by Kevin Ford, Ben Green, Sergei Konyagin, and Terence Tao,[5] and independently by James Maynard.[6] The two sets of authors eliminated one of the factors of later that year,[7] showing that, infinitely often,

where is some constant.

Heuristic justification

Cramér's conjecture is based on a probabilistic model—essentially a heuristic—in which the probability that a number of size x is prime is 1/log x. This is known as the Cramér random model or Cramér model of the primes.[8]

In the Cramér random model,

with probability one.[1] However, as pointed out by Andrew Granville,[9] Maier's theorem shows that the Cramér random model does not adequately describe the distribution of primes on short intervals, and a refinement of Cramér's model taking into account divisibility by small primes suggests that the limit should not be 1, but a constant (OEISA125313), where is the Euler–Mascheroni constant. János Pintz has suggested that the limit sup may be infinite,[10] and similarly Leonard Adleman and Kevin McCurley write

As a result of the work of H. Maier on gaps between consecutive primes, the exact formulation of Cramér's conjecture has been called into question [...] It is still probably true that for every constant , there is a constant such that there is a prime between and .[11]

Similarly, Robin Visser writes

In fact, due to the work done by Granville, it is now widely believed that Cramér's conjecture is false. Indeed, there [are] some theorems concerning short intervals between primes, such as Maier's theorem, which contradict Cramér's model.[12]

(internal references removed).

Prime gap function

Daniel Shanks conjectured the following asymptotic equality, stronger than Cramér's conjecture,[13] for record gaps:

J.H. Cadwell[14] has proposed the formula for the maximal gaps: which is formally identical to the Shanks conjecture but suggests a lower-order term.

Marek Wolf[15] has proposed the formula for the maximal gaps expressed in terms of the prime-counting function :

where and is the twin primes constant; see OEISA005597, A114907. This is again formally equivalent to the Shanks conjecture but suggests lower-order terms

.

Thomas Nicely has calculated many large prime gaps.[16] He measures the quality of fit to Cramér's conjecture by measuring the ratio

He writes, "For the largest known maximal gaps, has remained near 1.13."

See also

References

  1. ^ a b c Cramér, Harald (1936), "On the order of magnitude of the difference between consecutive prime numbers" (PDF), Acta Arithmetica, 2: 23–46, doi:10.4064/aa-2-1-23-46, archived from the original (PDF) on 2018-07-23, retrieved 2012-03-12
  2. ^ Baker, R. C., Harman, G., Pintz, J. (2001), "The Difference Between Consecutive Primes, II", Proceedings of the London Mathematical Society, 83 (3), Wiley: 532–562, doi:10.1112/plms/83.3.532
  3. ^ Westzynthius, E. (1931), "Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind", Commentationes Physico-Mathematicae Helsingsfors (in German), 5 (5): 1–37, JFM 57.0186.02, Zbl 0003.24601.
  4. ^ Rankin, R. A. (December 1938). "The difference between consecutive prime numbers". J. London Math. Soc. 13 (4): 242–247. doi:10.1017/S0013091500025633.
  5. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Tao, Terence (2016). "Large gaps between consecutive prime numbers". Annals of Mathematics. Second series. 183 (3): 935–974. arXiv:1408.4505. doi:10.4007/annals.2016.183.3.4.
  6. ^ Maynard, James (2016). "Large gaps between primes". Annals of Mathematics. Second series. 183 (3): 915–933. arXiv:1408.5110. doi:10.4007/annals.2016.183.3.3.
  7. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence (2018). "Long gaps between primes". Journal of the American Mathematical Society. 31: 65–105. arXiv:1412.5029. doi:10.1090/jams/876.
  8. ^ Terry Tao, 254A, Supplement 4: Probabilistic models and heuristics for the primes (optional), section on The Cramér random model, January 2015.
  9. ^ Granville, A. (1995), "Harald Cramér and the distribution of prime numbers" (PDF), Scandinavian Actuarial Journal, 1: 12–28, doi:10.1080/03461238.1995.10413946, archived from the original (PDF) on 2015-09-23, retrieved 2007-06-05.
  10. ^ Pintz, János (April 1997). "Very large gaps between consecutive primes" (PDF). Journal of Number Theory. 63 (2): 286–301. doi:10.1006/jnth.1997.2081.
  11. ^ Adleman, Leonard; McCurley, Kevin (6 May 1994). "Open Problems in Number Theoretic Complexity, II". ANTS-I: Proceedings of the First International Symposium on Algorithmic Number Theory. Lecture Notes in Computer Science. Vol. 877. Ithaca, NY: Springer. pp. 291–322. CiteSeerX 10.1.1.48.4877. doi:10.1007/3-540-58691-1_70. ISBN 3-540-58691-1.
  12. ^ Robin Visser, Large Gaps Between Primes, University of Cambridge (2020).
  13. ^ Shanks, Daniel (1964), "On Maximal Gaps between Successive Primes", Mathematics of Computation, 18 (88), American Mathematical Society: 646–651, doi:10.2307/2002951, JSTOR 2002951, Zbl 0128.04203.
  14. ^ Cadwell, J. H. (1971), "Large Intervals Between Consecutive Primes", Mathematics of Computation, 25 (116): 909–913, doi:10.2307/2004355, JSTOR 2004355
  15. ^ Wolf, Marek (2014), "Nearest-neighbor-spacing distribution of prime numbers and quantum chaos", Phys. Rev. E, 89 (2): 022922, arXiv:1212.3841, Bibcode:2014PhRvE..89b2922W, doi:10.1103/physreve.89.022922, PMID 25353560, S2CID 25003349
  16. ^ Nicely, Thomas R. (1999), "New maximal prime gaps and first occurrences", Mathematics of Computation, 68 (227): 1311–1315, Bibcode:1999MaCom..68.1311N, doi:10.1090/S0025-5718-99-01065-0, MR 1627813.

Read other articles:

Koordinat: 8°39′06″S 115°11′42″E / 8.651647°S 115.195006°E / -8.651647; 115.195006 Denpasar BaratKecamatanPeta lokasi Kecamatan Denpasar BaratNegara IndonesiaProvinsiBaliKotaDenpasarPemerintahan • CamatDrs. Ida Bagus Joni Ariwibawa, M.Si.[1]Populasi • Total259,790 jiwa (2.016)[2]229,435 jiwa (2.010)[3] jiwaKode pos80112-80119Kode Kemendagri51.71.03 Kode BPS5171030 Luas23,76 km²[2]Desa/kelurahan8 ...

 

1998 video gameQuest for Glory V: Dragon FireDeveloper(s)Yosemite EntertainmentPublisher(s)Sierra FXProducer(s)Jay D. UsherDesigner(s)Lori Ann ColeProgrammer(s) Eric Lengyel Larry Scott Artist(s) Jon Bock Terry Robinson Composer(s)Chance ThomasSeriesQuest for GloryPlatform(s)Windows, MacintoshReleaseDecember 8, 1998[1][2]Genre(s)Action role-playing gameMode(s)Single-player Quest for Glory V: Dragon Fire is the fifth and final game in the Quest for Glory computer game series by...

 

Matsya (ikan raksasa) melindungi Waiwaswata Manu dan tujuh orang bijak pada saat Banjir Besar. Suatu lukisan miniatur buatan abad ke-19 dari Jaipur, India. Bagian dari seriAgama Hindu Umat Sejarah Topik Sejarah Mitologi Kosmologi Dewa-Dewi Keyakinan Brahman Atman Karmaphala Samsara Moksa Ahimsa Purushartha Maya Filsafat Samkhya Yoga Mimamsa Nyaya Waisesika Wedanta Dwaita Adwaita Wisistadwaita Pustaka Weda Samhita Brāhmana Aranyaka Upanishad Wedangga Purana Itihasa Bhagawadgita Manusmerti Art...

City in Louisiana, United StatesCovington, LouisianaCityCity of CovingtonSt. Tammany Parish OfficesLocation of Covington in St. Tammany Parish, Louisiana.Location of Louisiana in the United StatesCoordinates: 30°28′44″N 90°06′15″W / 30.47889°N 90.10417°W / 30.47889; -90.10417CountryUnited StatesStateLouisianaParishSt. TammanyFounded1813Founded byJohn Wharton CollinsNamed forLeonard Wailes CovingtonGovernment • MayorMark R. JohnsonArea[1]...

 

Gaeilge na hÉireann Obszar Irlandia (głównie zachodnia) i inne Liczba mówiących ok. 140 tys. (język ojczysty)ok. 1,77 mln (podstawowa znajomość) Pismo/alfabet łacińskie Klasyfikacja genetyczna Języki indoeuropejskie Języki celtyckie Języki goidelskie Język irlandzki Status oficjalny język urzędowy  Irlandia Wielka Brytania ( Irlandia Północna) Unia Europejska (jeden z 24 języków oficjalnych) Organ regulujący Foras na Gaeilge UNESCO 3 zdecydowanie zagro...

 

José María Caro Rodríguez (23 Juni 1866 – 4 Desember 1958) adalah seorang kardinal Gereja Katolik Roma Chili. Ia menjabat sebagai Uskup Agung Santiago dari 1939 sampai kematiannya, dan diangkat menjadi kardinal pada 1946 oleh Paus Pius XII. Pranala luar Cardinals of the Holy Roman Church Catholic-Hierarchy Pengawasan otoritas Umum Integrated Authority File (Jerman) ISNI 1 VIAF 1 WorldCat Perpustakaan nasional Chili 2 Spanyol 2 Amerika Serikat Belanda Polandia Vatikan Lain-l...

This article includes inline citations, but they are not properly formatted. Please improve this article by correcting them. (October 2023) (Learn how and when to remove this template message) Libyan Field Marshal leader of LNA (born 1943) Field MarshalKhalifa Haftarخليفة حفترHaftar in 2023Supreme Commander of the Libyan National ArmyIncumbentAssumed office 2 March 2015PresidentAguila Saleh Issa (acting) Mohamed al-MenfiPrime MinisterAbdullah al-Thani Abdul Hamid Dbeibeh[a ...

 

Category 4 North Indian tropical cyclone in 1996 1996 Andhra Pradesh cycloneVery severe cyclonic storm (IMD scale)Category 4 tropical cyclone (SSHWS)Satellite image of the storm prior to landfall in India on 6 NovemberFormed4 November 1996Dissipated7 November 1996 Highest winds3-minute sustained: 145 km/h (90 mph) 1-minute sustained: 215 km/h (130 mph) Lowest pressure988 hPa (mbar); 29.18 inHg(Unofficially estimated at 927 hectopascals (27.37 inHg)) Fatalities1077 totalDama...

 

American film distributor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: First Look Studios – news · newspapers · books · scholar · JSTOR (January 2012) (Learn how and when to remove this template message) First Look StudiosFormerlyOverseas Filmgroup (1980-2001)First Look Media (2001-2005)TypePrivateIndustr...

  لمعانٍ أخرى، طالع رونالدو (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2021) رونالدو معلومات شخصية الميلاد 11 سبتمبر 1980 (43 سنة)[1]  الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب مهاجم الجنسية ال...

 

Erkrath stationThrough stationBeginning of the climb to HochdahlGeneral informationLocationMorper Allee 1, Erkrath, North Rhine-WestphaliaGermanyCoordinates51°13′13″N 6°54′11″E / 51.22038°N 6.902955°E / 51.22038; 6.902955Line(s)Düsseldorf–Elberfeld (KBS 450.8)Platforms2Other informationStation code1646[1]DS100 codeKER[2]IBNR8001841Category5[1]Fare zone VRR: 640[3] VRS: 1640 (VRR transitional tariff)[4] Websitewww.b...

 

British actor Ernest Butcher1936 Spotlight photoBornEdward Ernest Butcher(1885-04-07)7 April 1885Burnley, Lancashire, EnglandDied8 June 1965(1965-06-08) (aged 80)London, EnglandOccupationActorSpouseMuriel George Edward Ernest Butcher (7 April 1885 – 8 June 1965) was a British actor, on stage from 1935, and with many film and TV appearances.[1][2][3] He was the second husband of the actress Muriel George, and stepfather to her son, the critic John Davenport.&...

Digital Media Platform This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (November 2022) The topic of this article may not meet Wikipedia's notability guideline for web content. Please help to demonstrate the notability of the topic b...

 

Tanda protes NRG di Hari Raja tahun 2016: Panjang umur Republik Belanda.[1] Republikanisme di Belanda adalah sebuah gerakan yang bertujuan untuk meniadakan Monarki Belanda, dan menggantikannya dengan republik. Meskipun terdapat beberapa dukungan populer dan politik di Belanda untuk mengurangi kekuasaan politik dan subsidi wangsa kerajaan, popularitas gerakan republikan terorganisir yang bertujuan untuk meniadakan monarki secara keseluruhan umumnya minoritas (menurut jajak pendapat tah...

 

Terremoto de Santiago de 1647 8,5 en potencia de Magnitud de Momento (MW) Mapa del Reino de Chile en 1640.Fecha y hora 13 de mayo de 1647, 22:30Coordenadas del epicentro 33°24′S 70°36′O / -33.4, -70.6ConsecuenciasZonas afectadas Santiago de Nueva Extremadura, Reino de ChileVíctimas 600 fallecidos aprox.[editar datos en Wikidata] El terremoto de Santiago de 1647 fue un evento registrado el lunes 13 de mayo de 1647 a las 22:30 hora local.[nota 1]​ El sismo...

Сушківський 49°42′43″ пн. ш. 31°41′18″ сх. д. / 49.71221500002777560° пн. ш. 31.68840500002777816° сх. д. / 49.71221500002777560; 31.68840500002777816Координати: 49°42′43″ пн. ш. 31°41′18″ сх. д. / 49.71221500002777560° пн. ш. 31.68840500002777816° сх. д. / 49.71221500002777560; 31.68840500002777816...

 

Review of the election 1986 United States Senate election in Arizona ← 1980 November 4, 1986 1992 →   Nominee John McCain Richard Kimball Party Republican Democratic Popular vote 521,850 340,965 Percentage 60.48% 39.51% County results McCain:      50–60%      60-70% Kimball:      50–60% U.S. senator before election Barry Goldwater Republican Elected U.S. Senator John McCain Republica...

 

2017 Chinese filmYouthFilm posterChinese nameTraditional Chinese芳華Simplified Chinese芳华Literal meaningYouthfulnessTranscriptionsStandard MandarinHanyu Pinyinfānghuá Directed byFeng XiaogangWritten byGeling YanProduced byWang ZhongleiStarringHuang XuanMiao MiaoZhong Chuxi Yang CaiyuEdited byZhang QiDistributed byIM Global[1]Release dates September 2017 (2017-09) (TIFF) December 15, 2017 (2017-12-15) Running time135 minutesCountryChinaLanguageM...

Equestrian at the 1986 Asian GamesVenueGwacheon Equestrian ParkDates23 September – 4 October 1986← 19821994 → Equestrian was contested at the 1986 Asian Games in Seoul, South Korea. Equestrian was contested from 23 September to 4 October. Japan and South Korea dominated the competition, winning all six gold medals. Medalists Event Gold Silver Bronze Individual dressagedetails Suh Jung-kyun South Korea Hiroshi Hoketsu Japan Shin Chang-moo South Korea...

 

Commander Submarine Force U.S. Pacific Fleet Roy Stanley BensonRoy Stanley BensonNickname(s)Ensign, Pigboat BennyBorn(1906-12-07)December 7, 1906Concord, New Hampshire, U.S.DiedFebruary 7, 1995(1995-02-07) (aged 88)Washington, D.C.BuriedUS Naval Academy CemeteryAllegianceUnited States of AmericaService/branch United States NavyYears of service1929-1969RankRear AdmiralCommands heldUSS Trigger (SS-237)USS Razorback (SS-394) Submarine Division 43Submarine Development Group Two USS...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!