Cassie's law

Cassie's law, or the Cassie equation, describes the effective contact angle θc for a liquid on a chemically heterogeneous surface, i.e. the surface of a composite material consisting of different chemistries, that is, non-uniform throughout.[1] Contact angles are important as they quantify a surface's wettability, the nature of solid-fluid intermolecular interactions.[2] Cassie's law is reserved for when a liquid completely covers both smooth and rough heterogeneous surfaces.[3]

Cassie-Baxter state. A water droplet resting on a heterogeneous surface (sand), forms a contact angle, here

More of a rule than a law, the formula found in literature for two materials is;

where and are the contact angles for components 1 with fractional surface area , and 2 with fractional surface area in the composite material respectively. If there exist more than two materials then the equation is scaled to the general form of;

, with .[4]

Cassie-Baxter

Cassie's law takes on special meaning when the heterogeneous surface is a porous medium. now represents the solid surface area and air gaps, such that the surface is no longer completely wet. Air creates a contact angle of and because = , the equation reduces to:

, which is the Cassie-Baxter equation.[5]

Unfortunately the terms Cassie and Cassie-Baxter are often used interchangeably but they should not be confused. The Cassie-Baxter equation is more common in nature, and focuses on the 'incomplete coating' of surfaces by a liquid only. In the Cassie-Baxter state liquids sit upon asperities, resulting in air pockets that are bounded between the surface and liquid.

Homogeneous surfaces

The Cassie-Baxter equation is not restricted to only chemically heterogeneous surfaces, as air within porous homogeneous surfaces will make the system heterogeneous. However, if the liquid penetrates the grooves, the surface returns to homogeneity and neither of the previous equations can be used. In this case the liquid is in the Wenzel state, governed by a separate equation. Transitions between the Cassie-Baxter state and the Wenzel state can take place when external stimuli such as pressure or vibration are applied to the liquid on the surface.[6]

Equation origin

When a liquid droplet interacts with a solid surface, its behaviour is governed by surface tension and energy. The liquid droplet could spread indefinitely or it could sit on the surface like a spherical cap at which point there exists a contact angle.

Defining as the free energy change per unit area caused by a liquid spreading,

where , are the fractional areas of the two materials on the heterogeneous surface, and and the interfacial tensions between solid, air and liquid.

The contact angle for the heterogeneous surface is given by,

, with the interfacial tension between liquid and air.

The contact angle given by the Young equation is,

Thus by substituting the first expression into Young's equation, we arrive at Cassie's law for heterogeneous surfaces,

[1]

History behind Cassie's law

Young's law

Studies concerning the contact angle existing between a liquid and a solid surface began with Thomas Young in 1805.[7] The Young equation

Different contact angle scenarios

reflects the relative strength of the interaction between surface tensions at the three phase contact, and is the geometric ratio between the energy gained in forming a unit area of the solid–liquid interface to that required to form a liquid–air interface.[1] However Young's equation only works for ideal and real surfaces and in practice most surfaces are microscopically rough.

Cassie's law

Wenzel state

In 1936 Young's equation was modified by Robert Wenzel to account for rough homogeneous surfaces, and a parameter was introduced, defined as the ratio of the true area of the solid compared to its nominal.[8] Known as the Wenzel equation,

shows that the apparent contact angle, the angle measured at casual inspection, will increase if the surface is roughened. Liquids with contact angle are known to be in the Wenzel state.

Cassie-Baxter state

The notion of roughness effecting the contact angle was extended by Cassie and Baxter in 1944 when they focused on porous mediums, where liquid does not penetrate the grooves on rough surface and leaves air gaps.[5] They devised the Cassie-Baxter equation;

, sometimes written as where the has become .[9]

Cassie's Law

In 1948 Cassie refined this for two materials with different chemistries on both smooth and rough surfaces, resulting in the aforementioned Cassie's law

Arguments and inconsistencies

Following the discovery of superhydrophobic surfaces in nature and the growth of their application in industry, the study of contact angles and wetting has been widely reexamined. Some claim that Cassie's equations are more fortuitous than fact with it being argued that emphasis should not be placed on fractional contact areas but actually the behaviour of the liquid at the three phase contact line.[10] They do not argue never using the Wenzel and Cassie-Baxter's equations but that “they should be used with knowledge of their faults”. However the debate continues, as this argument was evaluated and criticised with the conclusion being drawn that contact angles on surfaces can be described by the Cassie and Cassie-Baxter equations provided the surface fraction and roughness parameters are reinterpreted to take local values appropriate to the droplet.[11] This is why Cassie's law is actually more of a rule.

Examples

It is widely agreed that the water repellency of biological objects is due to the Cassie-Baxter equation. If water has a contact angle between , then the surface is classed as hydrophilic, whereas a surface producing a contact angle between is hydrophobic. In the special cases where the Contact angle is , then it is known as superhydrophobic.

Lotus Effect

One example of a superhydrophobic surface in nature is the Lotus leaf.[12] Lotus leaves have a typical contact angle of , ultra low water adhesion due to minimal contact areas, and a self cleaning property which is characterised by the Cassie-Baxter equation.[13] The microscopic architecture of the Lotus leaf means that water will not penetrate nanofolds on the surface, leaving air pockets below. The water droplets become suspended in the Cassie-Baxter state and are able to roll off the leaf picking up dirt as they do so, thus cleaning the leaf.

Feathers

The Cassie–Baxter wetting regime also explains the water repellent features of the pennae (feathers) of a bird. The feather consists of a topography network of 'barbs and barbules' and a droplet that is deposited on a these resides in a solid-liquid-air non-wetting composite state, where tiny air pockets are trapped within.[14]

See also

References

  1. ^ a b c Cassie, A. B. D. (1948). "Contact angles". Discussions of the Faraday Society. 3: 11. doi:10.1039/DF9480300011.
  2. ^ Henderson, J. R. (20 May 2000). "Statistical mechanics of Cassie's law". Molecular Physics. 98 (10): 677–681. Bibcode:2000MolPh..98..677H. doi:10.1080/00268970009483335. S2CID 95034874.
  3. ^ Milne, A.J.B.; Amirfazli, A. (January 2012). "The Cassie equation: How it is meant to be used". Advances in Colloid and Interface Science. 170 (1–2): 48–55. doi:10.1016/j.cis.2011.12.001. PMID 22257682.
  4. ^ Berthier, Jean; Silberzan, Pascal (2010). Microfluidics for biotechnology (2nd ed.). Boston: Artech House. ISBN 978-1-59693-444-3. OCLC 642685865.[page needed]
  5. ^ a b Cassie, A. B. D.; Baxter, S. (1944). "Wettability of porous surfaces". Transactions of the Faraday Society. 40: 546. doi:10.1039/tf9444000546.
  6. ^ Lopes, Daisiane M.; Ramos, Stella M. M.; de Oliveira, Luciana R.; Mombach, José C. M. (2013). "Cassie–Baxter to Wenzel state wetting transition: a 2D numerical simulation". RSC Advances. 3 (46): 24530. Bibcode:2013RSCAd...324530L. doi:10.1039/c3ra45258a.
  7. ^ "III. An essay on the cohesion of fluids". Philosophical Transactions of the Royal Society of London. 95: 65–87. January 1805. doi:10.1098/rstl.1805.0005. S2CID 116124581.
  8. ^ Marmur, Abraham (September 2003). "Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?". Langmuir. 19 (20): 8343–8348. doi:10.1021/la0344682.
  9. ^ Scientific, Biolin. "Influence of Surface roughness on contact angle and wettability" (PDF).
  10. ^ Gao, Lichao; McCarthy, Thomas J. (March 2007). "How Wenzel and Cassie Were Wrong". Langmuir. 23 (7): 3762–3765. doi:10.1021/la062634a. PMID 17315893.
  11. ^ McHale, G. (July 2007). "Cassie and Wenzel: Were They Really So Wrong?". Langmuir. 23 (15): 8200–8205. doi:10.1021/la7011167. PMID 17580921.
  12. ^ Law, Kock-Yee (20 February 2014). "Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right". The Journal of Physical Chemistry Letters. 5 (4): 686–688. doi:10.1021/jz402762h. PMID 26270837.
  13. ^ Darmanin, Thierry; Guittard, Frédéric (June 2015). "Superhydrophobic and superoleophobic properties in nature". Materials Today. 18 (5): 273–285. doi:10.1016/j.mattod.2015.01.001.
  14. ^ Bormashenko, Edward; Bormashenko, Yelena; Stein, Tamir; Whyman, Gene; Bormashenko, Ester (July 2007). "Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition". Journal of Colloid and Interface Science. 311 (1): 212–216. Bibcode:2007JCIS..311..212B. doi:10.1016/j.jcis.2007.02.049. PMID 17359990.

Read other articles:

NuscoKomuneComune di NuscoLokasi Nusco di Provinsi AvellinoNegara ItaliaWilayah CampaniaProvinsiAvellino (AV)Luas[1] • Total53,6 km2 (20,7 sq mi)Ketinggian[2]914 m (2,999 ft)Populasi (2016)[3] • Total4.258 • Kepadatan79/km2 (210/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos83051Kode area telepon0827Situs webhttp://www.comune.nusco.gov.it Nusco adalah sebuah kot...

 

Bahri Guigaالبحري ڤيڤةPersonal detailsBorn(1904-03-04)March 4, 1904Testour, Regency of TunisiaDiedSeptember 2, 1995(1995-09-02) (aged 91)CitizenshipTunisianPolitical partyNeo DestourAlma materParis Institute of Political StudiesOccupationLawyer, Politician Bahri Guiga (March 4, 1904 - September 2, 1995) was a Tunisian lawyer and politician. Biography Originating in the Berber village of Takrouna, he studied in Lycée Carnot de Tunis along with Habib Bourguiba who was his best f...

 

Parque nacional Montañas Bunya UbicaciónPaís  AustraliaCoordenadas 26°47′58″S 151°32′13″E / -26.799444444444, 151.53694444444CaracterísticasÁrea 1923 kilómetros cuadrados y 193,85994140625 kilómetros cuadrados[editar datos en Wikidata] Montañas Bunya es un parque nacional en Queensland (Australia). El parque incluye gran parte de una cadena montañosa llamada Montañas Bunya. Está ubicado a 1448 km al noroeste de Brisbane, 63 km al noreste de ...

Nicole Gibbs Wimbledon 2018País  Estados UnidosResidencia Santa Mónica, Estados UnidosFecha de nacimiento 3 de marzo de 1993 (30 años)Lugar de nacimiento Cincinnati, Estados UnidosAltura 1,68 m (5′ 6″)Profesional desde 2013Retiro ActivaBrazo hábil Diestra, revés a dos manosDinero ganado 1 839 720 dólares estadounidensesPerfil oficial WTA Perfil WTAIndividualesRécord de su carrera 303–221Títulos de su carrera 0 WTA, (7 ITF)Mejor ranking 68° (25 de julio de 20...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 1 de junio de 2014. Este nombre sigue la onomástica coreana; el apellido es Kim. Hyolyn Hyolyn en el Aeropuerto de Incheon, el 14 de febrero de 2019.Información personalNombre de nacimiento Kim Hyo Jung (김효정)Nombre en coreano 김효정 Otros nombres HyorinNacimiento 11 de diciembre de 1990 (32 años)Incheon, Corea del SurNacionalidad SurcoreanaEducaciónEducad...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2021) لعبت جمهورية الصين الشعبية دورًا رئيسيًا في حرب فيتنام (1955-1975). دعم الشيوعيون الصينيون منذ عام 1949 تمرد فيت مين ضد نظام الهند الصينية الفرنسية الاستعماري. وعندم...

Folgende Teile dieses Artikels scheinen seit Mai 2020 nicht mehr aktuell zu sein: Gesamter Fließtext (Kapitel „Verlauf“) mit Ausnahme eines inhaltsarmen Satzes Bitte hilf uns dabei, die fehlenden Informationen zu recherchieren und einzufügen. Wikipedia:WikiProjekt Ereignisse/Vergangenheit/fehlend Die COVID-19-Pandemie in Nepal tritt als regionales Teilgeschehen des weltweiten Ausbruchs der Atemwegserkrankung COVID-19 auf und beruht auf Infektionen mit dem Ende 2019 neu aufgetretenen...

 

الحرس الوطني للولايات المتحدة الأمريكية شعار الحرس الوطني الأمريكي الدولة  الولايات المتحدة الأمريكية الإنشاء 1903 النوع قوة احتياطميليشيا الحجم 450,100[note 1] جزء من  القوات البرية للولايات المتحدة و القوات الجوية الأمريكية شعار نصي دائما على استعداد ، دائما هناك! ا

 

?Морські їжаки Біологічна класифікація Царство: Тварини (Animalia) Тип: Голкошкірі (Echinodermata) Підтип: Ехінозої (Echinozoa) Клас: Морські їжаки (Echinoidea)Nathaniel Gottfried Leske, 1778 Підкласи та ряди Підклас Perischoechinoidea Надряд Cidaroida (їжак-олівець) Підклас Euechinoidea Надряд Atelostomata Cassiduloida Spatangoida (їжак-серце)...

HMGB2 المعرفات الأسماء المستعارة HMGB2, HMG2, high mobility group box 2 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 163906 MGI: MGI:96157 HomoloGene: 37582 GeneCards: 3148 علم الوجود الجيني الوظيفة الجزيئية • ربط دي إن إي• protein domain specific binding• ‏GO:0001131، ‏GO:0001151، ‏GO:0001130، ‏GO:0001204 DNA-binding transcription factor activity• transcriptio...

 

Luther BibleMartin Luther's 1534 bibleNama lengkapBiblia / das ist / die gantze Heilige Schrifft DeudschSingkatanLUTBahasaBahasa Jerman Tinggi Baru AwalTerbitan PL1534Terbitan PB1522Terbitanlengkap1534ApokrifaDeuterokanonikaDoa ManasyePenerjemahMartin LutherPhilipp MelanchthonCaspar CreuzigerJustus JonasJohannes Bugenhagenothers[1]Naskah sumberNT: Textus Receptus (Luther) Vulgata (Bugenhagen)[1]OT: Septuaginta (Melanchthon) 2nd Bomberg Edition (Creuziger)&#...

 

Scott EastwoodScott Eastwood pada 20 Februari 2015LahirScott Clinton Reeves[1]21 Maret 1986 (umur 37)Monterey County, California, Amerika SerikatTempat tinggalSan Diego, California[2]AlmamaterLoyola Marymount UniversityPekerjaanpemeranmodelprodusersutradaraTahun aktif2004–sekarangKota asalHawaiiTinggi5 ft 11 in (180 cm)Orang tuaClint Eastwood Jacelyn ReevesKerabatKyle Eastwood(Saudara)Alison Eastwood(Saudara)Francesca Eastwood(Saudara) Scott Cli...

1975 song by Bob Dylan For the Swedish artist, see Amanda Bergman. Idiot WindSong by Bob Dylanfrom the album Blood on the Tracks ReleasedJanuary 1975Recorded27 December 1974StudioSound 80Minneapolis, MinnesotaGenreRockLength7:48LabelColumbiaSongwriter(s)Bob DylanProducer(s)Bob DylanBlood on the Tracks track listing10 tracks Side one Tangled Up in Blue Simple Twist of Fate You're a Big Girl Now Idiot Wind You're Gonna Make Me Lonesome When You Go Side two Meet Me in the Morning Lily, Rosemary ...

 

Extinct language of Corsica This article is about the ancient language of Corsica. For the modern Romance language, see Corsican language. Paleo-CorsicanRegionCorsicaEthnicityAncient CorsiExtinctYes, date uncertainLanguage familyLigurian?[1][2] Language codesISO 639-3None (mis)GlottologNone Area of Tyrsenian languages (Rhaetian, Etruscan, Lemnian), Paleo-Corsican and Paleo-Sardinian languages. Ancient tribes of Corsica, speakers of Paleo-Corsican language or languages. Nuragic...

 

A-LeagueMusim2015–2016Tanggal8 Oktober 2015 – 1 Mei 2016JuaraAdelaide United(gelar ke-1)Pertandingan perdanaAdelaide United(gelar ke-2)Liga ChampionsAdelaide UnitedWestern Sydney WanderersBrisbane RoarJumlah pertandingan135Jumlah gol421 (3,12 per pertandingan)Pencetak golterbanyak Bruno Fornaroli (Melbourne City)(23 gol)Penjaga gawangterbaikThomas SørensenKemenangan kandangterbesarBrisbane Roar 5–0 Melbourne Victory(12 March 2016)Kemenangan tandangterbesarNewcastle Jets 1–6 Pert...

Japanese musician Naoko Yamano山野直子Yamano performing live in Manhattan at the Blender Theater, November 19, 2007Born (1960-12-18) December 18, 1960 (age 62)Osaka Prefecture, JapanOccupationMusicianYears active1981–presentRelativesAtsuko Yamano (sister)Musical careerGenres Pop punk post-punk alternative rock indie rock indie pop Instrument(s) Guitar vocals bass keyboards Member ofShonen KnifeWebsiteshonenknife.net Musical artist Naoko Yamano (山野直子, Yamano Naoko, ...

 

2023 Indian Marathi language Film directed by Devendra Gaikwad ChowkTheatrical release posterMarathiचौक Directed byDevendra GaikwadWritten byDevendra GaikwadScreenplay byDevendra GaikwadStory byDevendra Arun GaikwadProduced byVishal ChandaneDilip Lalasaheb PatilStarringKiran GaikwadSanskruti BalgudePravin TardeSnehal TardeAkshay TanksaleUpendra LimayeSuresh VishwakarmaRamesh PardeshiCinematographyMayur HardasEdited byMayur HardasMusic byScore:Omkar DhotreSongs:Sai-PiyushOmkar Swarup Bag...

 

Voce principale: Minas Tênis Clube (pallavolo maschile). Minas Tênis ClubeStagione 2022-2023Sport pallavolo Squadra Minas Allenatore Nery Tambeiro All. in seconda Fernando Martins Presidente Ricardo Vieira Santiago Superliga Série A2ª Coppa del Brasile3ª Supercoppa brasilianaFinale Campionato MineiroFinale Campionato sudamericanoFinale Campionati mondiale4ª Maggiori presenzeCampionato: Arjona, Honorato, Nascimento (26) Miglior marcatoreCampionato: Honorato (333) 2021-22 2023-24 Que...

Welsh Premier League 2012-2013Corbett Sports Welsh Premier League 2012-2013 Competizione Welsh Premier League Sport Calcio Edizione 21ª Organizzatore FAW Date dal 17 agosto 2012al 27 aprile 2013 Luogo  Galles Partecipanti 12 Risultati Vincitore  The New Saints(7º titolo) Retrocessioni  Llanelli Town Afan Lido Statistiche Miglior marcatore Michael Wilde (25 goal)[1] Incontri disputati 168 Gol segnati 602 (3,58 per incontro) Cronologia della compe...

 

Paramitha RusadyBornPradnya Paramitha Chandra Devy Rusady (1966-08-11) August 11, 1966 (age 57)Makassar, South Sulawesi, IndonesiaNationalityIndonesianOccupations Celebrity Singer Presenter Spouses Gunawan Sudradjat ​ ​(m. 2000⁠–⁠2002)​ Nenad Bago ​(m. 2004⁠–⁠2012)​ PartnerDwiki Dharmawan (1988 - 1990)ChildrenAdrian Tegar Maharaja BagoParent(s)Raden Ayu Marry ZumaryaRaden Mas Yus Rusad...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!