Organic reactions in which the H in a C–H bond is substituted
This article is about Organometallic pathways involving metal-carbon bonds. For other uses, see Hydrocarbon.
In organic chemistry and organometallic chemistry, carbon–hydrogen bond activation (C−H activation) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a C−X bond (X ≠ H is typically a main group element, like carbon, oxygen, or nitrogen). Some authors further restrict the term C–H activation to reactions in which a C–H bond, one that is typically considered to be "unreactive", interacts with a transition metal center M, resulting in its cleavage and the generation of an organometallic species with an M–C bond. The intermediate of this step (sometimes known as the C−H activation step) could then undergo subsequent reactions with other reagents, either in situ (often allowing the transition metal to be used in a catalytic amount) or in a separate step, to produce the functionalized product.[1]
The alternative term C−H functionalization is used to describe any reaction that converts a relatively inert C−H bond into a C−X bond, irrespective of the reaction mechanism (or with an agnostic attitude towards it). In particular, this definition does not require the cleaved C–H bond to initially interact with the transition metal in the reaction mechanism.[2] In contrast to the organometallic variety, this broadened type of C-H activation is widely employed industrially and in nature. This broader definition encompasses all reactions that would fall under the restricted definition of C–H activation given above. However, it also includes iron-catalyzed alkane C–H hydroxylation reactions that proceed through the oxygen rebound mechanism (e.g. cytochrome P450 enzymes and their synthetic analogues), in which an organometallic species is not believed to be involved in the mechanism. In other cases, organometallic species are indirectly involved. This occurs, for example, with Rh(II)-catalyzed C–H insertion processes in which an electrophilic metal carbene species is generated and the hydrocarbon C–H bond inserts into the carbene carbon without direct interaction of the hydrocarbon with the metal. Other mechanistic possibilities not involving direct C–H bond cleavage by the metal include (i) generation of arylmetal species by electrophilic aromatic substitution mechanism (common for electrophilic Pd, Pt, Au, Hg species), (ii) cleavage of the C–H bond via hydrogen atom abstraction by an O- or N-centered radical, which may then go on to further react and undergo functionalization with or without forming an organometallic intermediate (e.g., Kharasch–Sosnovsky reaction), and (iii) C–H deprotonation at the α-position of a π-system assisted by initial formation of a π-complex with an electrophilic metal to generate a nucleophilic organometallic species (e.g., by cyclopentadienyliron complexes).
Often, when authors make the distinction between C–H functionalization and C−H activation, they will restrict the latter to the narrow sense. However, it may be challenging to definitively demonstrate the involvement or non-involvement of an interaction between the C–H bond and the metal prior to cleavage of the bond. This article discusses C–H functionalization reactions in general but with a focus on C–H activation sensu stricto.
Classification
Mechanisms for C-H activation by metal centers can be classified into three general categories:
(i) Oxidative addition, in which a low-valent metal center inserts into a carbon-hydrogen bond, which cleaves the bond and oxidizes the metal:
LnM + RH → LnM(R)(H)
(ii) Electrophilic activation in which an electrophilic metal attacks the hydrocarbon, displacing a proton:
LnM+ + RH → LnMR + H+
One particularly commonly variant of this category, known as concerted metalation–deprotonation, involves a ligated internal base (often a carboxylate, e.g., acetate or pivalate) simultaneously accepting the displaced proton intramolecularly.
The first C–H activation reaction is often attributed to Otto Dimroth, who in 1902, reported that benzene reacted with mercury(II) acetate (See: organomercury). Many electrophilic metal centers undergo this Friedel-Crafts-like reaction. Joseph Chatt observed the addition of C-H bonds of naphthalene by Ru(0) complexes.[3]
Chelation-assisted C-H activations are prevalent. Shunsuke Murahashi reported a cobalt-catalyzed chelation-assisted C-H functionalization of 2-phenylisoindolin-1-one from (E)-N,1-diphenylmethanimine.[4]
In some cases, discoveries in C-H activation were being made in conjunction with those of cross coupling. In 1969,[6] Yuzo Fujiwara reported the synthesis of (E)-1,2-diphenylethene from benzene and styrene with Pd(OAc)2 and Cu(OAc)2, a procedure very similar to that of cross coupling. On the category of oxidative addition, M. L. H. Green in 1970 reported on the photochemical insertion of tungsten (as a Cp2WH2 complex) in a benzene C–H bond[7] and George M. Whitesides in 1979 was the first to carry out an intramolecularaliphatic C–H activation[8]
The next breakthrough was reported independently by two research groups in 1982. R. G. Bergman reported the first transition metal-mediated intermolecular C–H activation of unactivated and completely saturated hydrocarbons by oxidative addition. Using a photochemical approach, photolysis of Cp*Ir(PMe3)H2, where Cp* is a pentamethylcyclopentadienyl ligand, led to the coordinatively unsaturated species Cp*Ir(PMe3) which reacted via oxidative addition with cyclohexane and neopentane to form the corresponding hydridoalkyl complexes, Cp*Ir(PMe3)HR, where R = cyclohexyl and neopentyl, respectively.[9] W.A.G. Graham found that the same hydrocarbons react with Cp*Ir(CO)2 upon irradiation to afford the related alkylhydrido complexes Cp*Ir(CO)HR, where R = cyclohexyl and neopentyl, respectively.[10] In the latter example, the reaction is presumed to proceed via the oxidative addition of alkane to a 16-electron iridium(I) intermediate, Cp*Ir(CO), formed by irradiation of Cp*Ir(CO)2.
The selective activation and functionalization of alkane C–H bonds was reported using a tungsten complex outfitted with pentamethylcyclopentadienyl, nitrosyl, allyl and neopentyl ligands, Cp*W(NO)(η3-allyl)(CH2CMe3).[11]
In one example involving this system, the alkane pentane is selectively converted to the halocarbon1-iodopentane. This transformation was achieved via the thermolysis of Cp*W(NO)(η3-allyl)(CH2CMe3) in pentane at room temperature, resulting in elimination of neopentane by a pseudo-first-order process, generating an undetectable electronically and sterically unsaturated 16-electron intermediate that is coordinated by an η2-butadiene ligand. Subsequent intermolecular activation of a pentane solvent molecule then yields an 18-electron complex possessing an n-pentyl ligand. In a separate step, reaction with iodine at −60 °C liberates 1-iodopentane from the complex.
Mechanistic understanding
One approach to improving chemical reactions is the understanding of the underlying reaction mechanism. time-resolved spectroscopic techniques can be used to follow the dynamics of the chemical reaction. This technique requires a trigger for initiating the process, which is in most cases illumination of the compound. Photoinitiated reactions of transition metal complexes with alkanes serve as a powerful model systems for understanding the cleavage of the strong C-H bond.[9][10]
In such systems, the sample is illuminated with UV-light, which excites the metal center, leading to ligand dissociation. This dissociation creates a highly reactive, electron deficient 16-electron intermediate, with a vacant coordination site. This species then binds to an alkane molecule, forming a σ-complex (coordination of a C-H bond). In a third step, the metal atom inserts into the C-H bond, cleaving it and yielding the alkyl (or aryl) metal hydride.
The intermediates and their kinetics can be observed using time-resolved spectroscopic techniques (e.g. TR-IR, TR-XAS, TR-RIXS). Time-resolved infrared spectroscopy (TR-IR) is a rather convenient method to observe these intermediates. However, it is only limited to complexes which have IR-active ligands and is prone to correct assignments on the femtosecond timescale due to underlying vibrational cooling. To answer the question of difference in reactivity for distinct complexes, the electronic structure of those needs to be investigated. This can be achieved by X-ray absorption spectroscopy (XAS) or resonant inelastic X-ray scattering (RIXS). These methods have been used to follow the steps of C-H activation with orbital resolution and provide detailed insights into the responsible interactions for the C-H bond breaking.[12][13]
Full characterization of the structure of methane bound to a metal center was reported by Girolami in 2023: isotopic perturbation of equilibrium (IPE) studies involving deuterated isotopologs showed that methane binds to the metal center through a single M···H-C bridge; changes in the 1JCH coupling constants indicate clearly that the structure of the methane ligand is significantly perturbed relative to the free molecule.[14]
Directed C-H activation
Directed-, chelation-assisted-, or "guided" C-H activation involves directing groups that influence regio- and stereochemistry.[15] This is the most useful style of C-H activation in organic synthesis. N,N-dimethylbenzylamine undergoes cyclometalation readily by many transition metals.[16] A semi-practical implementations involve weakly coordinating directing groups, as illustrated by the Murai reaction.[17]
The mechanism for the Pd-catalyzed C-H activation reactions of 2-phenylpyridine involves a metallacycle intermediate. The intermediate is oxidized to form a PdIV species, followed by reductive elimination to form the C-O bond and release the product.[18]
Borylation
Transforming C-H bonds into C-B bonds through borylation has been thoroughly investigated due to their utility in synthesis (i.e. for cross-coupling reactions). John F. Hartwig reported a highly regioselective arene and alkane borylation catalyzed by a rhodium complex. In the case of alkanes, exclusive terminal functionalization was observed.[19]
Later, ruthenium catalysts were discovered to have higher activity and functional group compatibility.[20]
Other borylation catalysts have also been developed, including iridium-based catalysts, which activate C-H bonds with high compatibility.[21][22][23]
Although chemists have failed to develop a commercial process for selective C-H activation of methane, such a reaction is the basis of reverse methanogenesis. In this nickel-catalyzed process, methane is converted to the methyl substituent of coenzyme M, CH3SCH2CH2SO−3.[24]
Naturally occurringmethane is not utilized as a chemical feedstock, despite its abundance and low cost. Current technology makes prodigious use of methane by steam reforming to produce syngas, a mixture of carbon monoxide and hydrogen. This syngas is then used in Fischer-Tropsch reactions to make longer carbon chain products or methanol, one of the most important industrial chemical feedstocks.[25][26] An intriguing method to convert these hydrocarbons involves C-H activation. Roy A. Periana, for example, reported that complexes containing late transition metals, such as Pt, Pd, Au, and Hg, react with methane (CH4) in H2SO4 to yield methyl bisulfate.[27][28] The process has not however been implemented commercially.
Asymmetric C-H activations
The total synthesis of lithospermic acid employs guided C-H functionalization late stage to a highly functionalized system. The directing group, a chiral nonracemic imine, is capable of performing an intramolecular alkylation, which allows for the rhodium-catalyzed conversion of imine to the dihydrobenzofuran.[30]
The total synthesis of calothrixin A and B features an intramolecular Pd-catalyzed cross coupling reaction via C-H activation, an example of a guided C-H activation. Cross coupling occurs between aryl C-I and C-H bonds to form a C-C bond.[31] The synthesis of a mescaline analogue employs the rhodium-catalyzed enantioselective annulation of an aryl imine via a C-H activation.[32]
Alkene isomerization
One type of useful transition metal C-H bond activations are alkene isomerization. At least two mechanisms are recognized. For alkene-metal hydrides, isomerization can proceed via migratory insertion, followed by beta-hydride elimination. This process is the basis of chain walking. Another mechanism for alkene isomerization is the conversion of an alkene complex to an allyl-hydride complex.[33]
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. (1995). "Selective Intermolecular Carbon–Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution". Accounts of Chemical Research. 28 (3): 154–162. doi:10.1021/ar00051a009.
Crabtree, R. H. (2001). "Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress – a new millennium in prospect". J. Chem. Soc., Dalton Trans. 17 (17): 2437–2450. doi:10.1039/B103147N.
Organometallic C–H Bond Activation: An Introduction Alan S. Goldman and Karen I. Goldberg ACS Symposium Series 885, Activation and Functionalization of C–H Bonds, 2004, 1–43
Periana, R. A.; Bhalla, G.; Tenn, W. J.; III; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C.; Ziatdinov, V. R. (2004). "Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the C–H activation reaction". Journal of Molecular Catalysis A: Chemical. 220 (1): 7–25. doi:10.1016/j.molcata.2004.05.036.
Lersch, M.Tilset (2005). "Mechanistic Aspects of C−H Activation by Pt Complexes". Chem. Rev. 105 (6): 2471–2526. doi:10.1021/cr030710y. PMID15941220., Vedernikov, A. N. (2007). "Recent Advances in the Platinum-mediated CH Bond Functionalization". Curr. Org. Chem. 11 (16): 1401–1416. doi:10.2174/138527207782418708.
Shulpin, G. B. (2010). "Selectivity enhancement in functionalization of C–H bonds: A review". Org. Biomol. Chem. 8 (19): 4217–4228. doi:10.1039/c004223d. PMID20593075.
Hashiguchi, B. G.; Bischof, S. M.; Konnick, M. M.; Periana, R. A. (2012). "Designing Catalysts for Functionalization of Unactivated C–H Bonds Based on the CH Activation Reaction". Acc. Chem. Res. 45 (6): 885–898. doi:10.1021/ar200250r. PMID22482496.
Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. (2012). "Beyond Directing Groups: Transition Metal-Catalyzed C H Activation of Simple Arenes". Angew. Chem. Int. Ed. 51 (41): 10236–10254. doi:10.1002/anie.201203269. PMID22996679.
Wencel-Delord, J.; Glorius, F. (2013). "C–H bond activation enables the rapid construction and late-stage diversification of functional molecules". Nature Chemistry. 5 (5): 369–375. Bibcode:2013NatCh...5..369W. doi:10.1038/nchem.1607. PMID23609086.
^Chatt, J.; Davidson, J. M. (1965). "The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0), and the preparation of new types of hydrido-complexes of ruthenium(II)". J. Chem. Soc.1965: 843. doi:10.1039/JR9650000843.
^Murahashi, Shunsuke (1955-12-01). "Synthesis of Phthalimidines from Schiff Bases and Carbon Monoxide". Journal of the American Chemical Society. 77 (23): 6403–6404. doi:10.1021/ja01628a120. ISSN0002-7863.
^Fekl, U.; Goldberg, K. I. (2003). Homogeneous Hydrocarbon C-H Bond Activation and Functionalization with Platinum. Advances in Inorganic Chemistry. Vol. 54. pp. 259–320. doi:10.1016/S0898-8838(03)54005-3. ISBN9780120236541.
^Fujiwara, Yuzo; Noritani, Ichiro; Danno, Sadao; Asano, Ryuzo; Teranishi, Shiichiro (1969-12-01). "Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate". Journal of the American Chemical Society. 91 (25): 7166–7169. doi:10.1021/ja01053a047. ISSN0002-7863. PMID27462934.
^Green, M. L.; Knowles, P. J. (1970). "Formation of a tungsten phenyl hydride derivatives from benzene". J. Chem. Soc. D. 24 (24): 1677. doi:10.1039/C29700001677.
^Foley, Paul; Whitesides, George M. (1979). "Thermal generation of bis(triethylphosphine)-3,3-dimethylplatinacyclobutane from dineopentylbis(triethylphosphine)platinum(II)". J. Am. Chem. Soc.101 (10): 2732–2733. doi:10.1021/ja00504a041.
^ abJanowicz, Andrew H.; Bergman, Robert G. (1982). "Carbon–hydrogen activation in saturated hydrocarbons: direct observation of M + R−H → M(R)(H)". J. Am. Chem. Soc.104 (1): 352–354. doi:10.1021/ja00365a091.
^ abHoyano, James K.; Graham, William A. G. (1982). "Oxidative addition of the carbon–hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex". J. Am. Chem. Soc.104 (13): 3723–3725. doi:10.1021/ja00377a032.
^Baillie, Rhett A.; Legzdins, Peter (2013). "Distinctive Activation and Functionalization of Hydrocarbon C–H Bonds Initiated by Cp*W(NO)(η3-allyl)(CH2CMe3) Complexes". Acc. Chem. Res. 47 (2): 330–340. doi:10.1021/ar400108p. PMID24047442.
^Chetcuti, Michael J.; Ritleng, Vincent (2007). "Formation of a Ruthenium–Arene Complex, Cyclometallation with a Substituted Benzylamine, and Insertion of an Alkyne". J. Chem. Educ. 84 (6): 1014. Bibcode:2007JChEd..84.1014C. doi:10.1021/ed084p1014.
^Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. (2006). "Ruthenium-Catalyzed Regiospecific Borylation of Methyl C-H bonds". J. Am. Chem. Soc. 128 (42): 13684–13685. doi:10.1021/ja064092p. PMID17044685.
^Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. (2002). "Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate". J. Am. Chem. Soc. 124 (3): 390–391. doi:10.1021/ja0173019. PMID11792205.
^Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. (2002). "A Stoichiometric Aromatic C-H Borylation Catalyzed by Iridium(I)/2,2′-Bipyridine Complexes at Room Temperature". Angewandte Chemie International Edition. 41 (16): 3056–3058. doi:10.1002/1521-3773(20020816)41:16<3056::aid-anie3056>3.0.co;2-#. PMID12203457.
^Press, L. P.; Kosanovich, A. J.; McCulloch, B. J.; Ozerov, O. V. (2016). "High-Turnover Aromatic C–H Borylation Catalyzed by POCOP-Type Pincer Complexes of Iridium". J. Am. Chem. Soc. 138 (30): 9487–9497. doi:10.1021/jacs.6b03656. PMID27327895.
^Sen, A. (1999). "Catalytic Activation of Methane and Ethane by Metal Compounds". In Murai, S. (ed.). Activation of Unreactive Bonds and Organic Synthesis. Vol. 3. Springer Berlin Heidelberg. pp. 81–95. ISBN978-3-540-64862-8.
^Davies, H. M. L.; Morton, D. (2011). "Guiding Principles for Site Selective and Stereoselective Intermolecular C–H Functionalization by Donor/Acceptor Rhodium Carbenes". Chemical Society Reviews. 40 (4): 1857–69. doi:10.1039/C0CS00217H. PMID21359404.
^O'Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. (2005). "Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via Catalytic C-H Bond Activation". J. Am. Chem. Soc. 127 (39): 13496–13497. doi:10.1021/ja052680h. PMID16190703.
^Ramkumar, N.; Nagarajan, R. (2013). "b. Total Synthesis of Calothrixin A and B via C-H Activation". J. Org. Chem. 78 (6): 2802–2807. doi:10.1021/jo302821v. PMID23421392.
^Ahrendt, Kateri A.; Bergman, Robert G.; Ellman, Jonathan A. (2003-04-01). "Synthesis of a Tricyclic Mescaline Analogue by Catalytic C−H Bond Activation". Organic Letters. 5 (8): 1301–1303. doi:10.1021/ol034228d. ISSN1523-7060. PMID12688744.
^Molloy, John J.; Morack, Tobias; Gilmour, Ryan (2019). "Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy". Angewandte Chemie International Edition. 58 (39): 13654–13664. doi:10.1002/anie.201906124. PMID31233259.
Government agency of Australia Australian Radiation Protection and Nuclear Safety AgencyAgency overviewFormed5 February 1999 (1999-02-05)Preceding agenciesNuclear Safety BureauAustralian Radiation LaboratoryJurisdictionCommonwealth of AustraliaHeadquartersYallambie, VictoriaMottoProtecting people and the environment from the harmful effects of radiationEmployees150[1]Ministers responsibleGed KearneyMark Butler, Minister for Health and Aged CareAgency executiveDr Gillian...
Церква Покрови Пресвятої Богородиці (Залісці) Тип церкваКраїна Україна : ISO3166-1 alpha-3:UKR; ISO3166-1 цифровий:804; Розташування ЗалісціКонфесія Православна церква УкраїниЄпархія Тернопільська єпархія ПЦУЗасновано 1909Будівництво 1909 Церква Покрови Пресвятої Богород
KarangrejaDesaKantor Desa KarangrejaNegara IndonesiaProvinsiJawa TengahKabupatenCilacapKecamatanCimangguKode pos53256Kode Kemendagri33.01.13.2013 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Perkebunan Kawung (Afdeling Kawung) yang berada dalam pengelolaan PTPN IX dan berada di wilayah desa Karangreja, Rejodadi, dan Padangsari (2021) Karangreja adalah desa di kecamatan Cimanggu, Cilacap, Jawa Tengah, Indonesia. Desa ini terletak di selatan Jalan Raya Wangon-Banjar. Terdapat ...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (January 2016) (Learn how and when to remove this template message) This article needs additional citations for ...
Protected buildings in Cardiff, Wales The Grade I listed Cardiff Castle and Animal Wall c. 1890s Map all coordinates using: OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) There are around 1,000 listed buildings in Cardiff,[1] the capital city of Wales. A listed building is one considered to be of special architectural, historical or cultural significance, which is protected from being demolished, extended or alter...
Portuguese educator, writer, and feminist Emília de Sousa CostaPhoto taken in 1914BornEmília da Piedade Teixeira Lopes15 December 1877Lamego, Viseu district, PortugalDied6 July 1959 (Aged 81)PortoNationalityPortugueseOther namesEmília da Piedade Teixeira Lopes de Sousa CostaOccupation(s)Writer and teacherKnown forChildren’s literature Emília de Sousa Costa (1877 - 1959) was a teacher who promoted female education, a writer of novels for both adults and children and a feminist....
Japanese figure skater Mako YamashitaYamashita at the 2018 Junior WorldsNative name山下 真瑚Born (2002-12-31) December 31, 2002 (age 20)Nagoya, JapanHometownNagoya, JapanHeight1.51 m (4 ft 11+1⁄2 in)Figure skating careerCountry JapanCoachMachiko Yamada Yuko Hongo Yukiko MurakamiSkating clubChukyo High School SCBegan skating2009 Medal record Representing Japan Figure skating: Ladies' singles World Junior Championships 2018 Sofia Ladies' singles Mako Yamashit...
South Sudanese Australian comedian Emo MajokEmo in 2023Birth nameEmmanuel Gureec MajokBorn (1988-08-06) 6 August 1988 (age 35)EthiopiaMediumStand-upNationalitySouth Sudanese AustralianYears active2018–presentGenresObservational comedypolitical satiresurreal humorblack comedySubject(s)Social liferefugeespoliticseconomical lifereligionrelationshipseducationWebsitehttps://www.emomajok.com/ Emo Majok, born Emmanuel Gureec Majok[1] (6 August 1988) is a South Sudanese Austra...
2006 Indian filmThimiruPosterDirected byTarun GopiWritten byG. V. RenjithProduced byVikram KrishnaStarringVishalReema SenSriya ReddyCinematographyPriyanEdited byV. T. VijayanMusic byYuvan Shankar RajaProductioncompanyG K Film CorporationRelease date 4 August 2006 (2006-08-04) Running time139 minutesCountryIndiaLanguageTamil Thimiru (transl. Arrogance) is a 2006 Indian Tamil-language action film directed by Tarun Gopi in his directorial debut and produced by Vikram Krishna...
Mexican footballer (born 1989) Liborio Sánchez Sánchez playing for QuerétaroPersonal informationFull name Liborio Vicente Sánchez LedesmaDate of birth (1989-10-09) 9 October 1989 (age 34)Place of birth Guadalajara, Jalisco, MexicoHeight 1.83 m (6 ft 0 in)Position(s) GoalkeeperTeam informationCurrent team San PedroYouth career2007–2010 GuadalajaraSenior career*Years Team Apps (Gls)2007–2009 Tapatio[1] 21 (0)2010–2013 Guadalajara 4 (0)2010–2011 → Veracr...
Yosua 18Kitab Yosua lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab YosuaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen6← pasal 17 pasal 19 → Yosua 18 (disingkat Yos 18) adalah pasal kedelapan belas Kitab Yosua dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen yang memuat riwayat Yosua dalam memimpin orang Israel menduduki tanah Kanaan.[1] Pasal ini berisi catatan mengenai pembagian tanah Kanaan kepada suku-suku Israel s...
Grand Mufti of India Sheikh Abubakr AhmadA. P. Aboobacker MusliyarMusliyar receiving an Award by OIC Today, MalaysiaGrand Mufti of IndiaIn office24 February 2019 -Preceded byAkhtar Raza Khan PersonalBornAboobacker (1931-03-22) 22 March 1931 (age 92)[1][a]Kanthapuram, Kozhikode district, Kerala, IndiaReligionIslamNationalityIndianHome townKanthapuramSpouseZainabDenominationSunniJurisprudenceShafi‘iNotable work(s)Fatwa of Sheikh Abubakr Ahmad on ISISAlma materBaqiyat...
Olympic fencing event Men's sabreat the Games of the IX OlympiadÖdön von TersztyánszkyVenueSchermzaalDates10–11 August 1928Competitors44 from 17 nationsMedalists Ödön von Tersztyánszky Hungary Attila Petschauer Hungary Bino Bini Italy← 19241932 → Fencing at the1928 Summer OlympicsÉpéemenTeam épéemenFoilmenwomenTeam foilmenSabremenTeam sabremenvte The men's sabre was one of seven fencing events on the Fencing at the 1928 Summer Olym...
Lucifersingolo discograficoScreenshot tratto dal video del branoArtistaShinee Pubblicazione19 luglio 2010 Durata3:54 Album di provenienzaLucifer GenereK-popDance popElettropop EtichettaSM Entertainment ProduttoreLee Soo-man Formatidownload digitale Shinee - cronologiaSingolo precedenteJo Jo(2009)Singolo successivoHello(2010) Lucifer è un singolo del gruppo musicale sudcoreano Shinee pubblicato il 19 luglio 2010 come primo estratto dal loro secondo album in studio omonimo. Tracce Lucifer – ...
Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Desa Karangsari. 8°07′48″S 112°01′43″E / 8.1301°S 112.0287°E / -8.1301; 112.0287 Desa Karangsari Karangsari Administratibo nga balangay Nasod Indonesya Lalawigan Jawa Timur Administratibo nga balangay Desa Karangsari Gitas-on 111 m (364 ft) Tiganos 8°07′48″S 112°01′43″E / 8.1301°S 112.0287°E / -8.1301; 112.0287 Timezone WIT (U...
Bruno Martins IndiMartins Indi con la maglia del Porto nel 2014Nazionalità Paesi Bassi Altezza185 cm Peso78 kg Calcio RuoloDifensore Squadra AZ Alkmaar CarrieraGiovanili 2000-2005 Spartaan '202005-2010 Feyenoord Squadre di club1 2010-2014 Feyenoord102 (5)2014-2016 Porto47 (2)2016-2020 Stoke City124 (2)2020- AZ Alkmaar69 (4)[1] Nazionale 2009 Paesi Bassi U-173 (1)2010-2012 Paesi Bassi U-1916 (1)2012-2013 Paesi Bassi U-218 (0)2012-2022 Paesi Bass...